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Basic Course Information

Course Title Signals & Systems

Course Code EEE- 0714-3201

Credits 03

CIE Marks 90

SEE Marks 60

Exam Hours
2 hours (Mid Exam)

3 hours (Semester Final 
Exam)

Level 6th Semester

Academic 
Session

Summer 2025
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Course Name: Signals & Systems(EEE 0714-3201)

3 Credit Course

Class: 17 weeks (2 classes per week)
=34 Hours

Preparation Leave (PL): 02 weeks

Exam: 04 weeks

Results: 02 weeks

Total: 25 Weeks

Attendance:

Students with more than or equal to 80% attendance in this course will 
be eligible to sit for the Semester End Examination (SEE). SEE is 
mandatory for all students.
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Continuous Assessment Strategy

Quizzes

Assignment

Presentation

Altogether 4 quizzes may be taken

during the semester, 2 quizzes will be

taken for midterm and 2 quizzes will 

be taken for final term.

Altogether 2 assignments may be

taken during the semester, 1

assignments will be taken for

midterm and 1 assignments will be

taken for final term.

The students will have to form a

group of maximum 3 members.

The topic of the presentation will

be given to each group and students

will have to do the group

presentation on the given topic.
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CIE- Continuous Internal Evaluation (90 Marks) SEE- Semester End
Examination (60 Marks)

Bloom’s

Category

Tests

Remember 10

Understand 10

Apply 10

Analyze 10

Evaluate 10

Create 10

Bloom’s

Category

Marks

(out of 90)

Tests
(45)

Quizzes
(15)

External 
Participation in
Curricular/Co-

Curricular 
Activities (15)

Remember 08 08 Bloom’s Affective 
Domain:
(Attitude or will)
Attendance: 15
Copy or attempt to 
copy: −10 Late 
Assignment: -10

Understand 08 07

Apply 08

Analyze 08

Evaluate 08

Create 05

ASSESSMENT PATTERN
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Course Learning Outcome (CLO)

Serial No. Course Learning Outcome (CLO) Blooms 

Taxonomy Level 

CLO-1 Understand the concept of signals and 

systems in time, frequency and Laplace 

domain

1,2 

Remembering, 

Understanding

CLO-2 Explain different properties of systems and 

signals
3 

Applying

CLO-3 Analize responses of LTI systems for 

different applications
4 

Analyzing 

CLO-4 Investigate the stability of LTI systems 1,2,5

Remembering, 

Understanding,

Creating
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SYNOPSIS / RATIONALE
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This course lays the foundation for understanding how 

signals (functions that convey information) interact with 

systems (entities that process these signals). It explores 

both continuous-time and discrete-time signal 

representations, system properties (such as linearity and 

stability), and mathematical tools like convolution, 

Fourier series, Laplace transforms, and state-space 

methods. The concepts introduced are central to 

advanced topics such as Digital Signal Processing, 

Control Systems, and Communication Systems.



Course Objective

Prepared By- Noor Md Shahriar, 
Senior Lecturer, Dept. of EEE, UGV

8

• Analyze and classify various types of signals and systems using mathematical 

and graphical representations.

• Determine and verify system properties such as linearity, causality, stability, 

and memory.

• Solve system differential equations using analytical techniques including zero-

input and zero-state responses.

• Apply Fourier and Laplace transforms to analyze system behavior in time and 

frequency domains.

• Evaluate system response using impulse response, transfer functions, and 

state-space representation.



Sl. Content of Course Hrs CLOs

1 Classification of signals, basic operation on signals, 

Elementary signals, representation of signals using impulse 

function, Systems- classification

10 CLO1

CLO2

2 Linearity, causality of LTI, Time invariance, memory, 

Stability, invertibility, Stability - system representation
10 CLO2

3 Order of the system, Solution techniques, Zero state and zero 

input response, Impulse response- convolution integral, 

Determination of system properties, State variable- basic 

concept, state equation and time domain solution, Fourier 

series- properties

20 CLO3

4 System response, frequency response of LTI systems, Fourier 

transformation- properties, System transfer function, 

Properties of, Laplace transformation, Inverse transform, 

solution of system equations, System stability and frequency 

response and application

20 CLO1

CLO4

COURSE OUTLINE
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COURSE SCHEDULE
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Week Topics
Teaching-Learning 

Strategy

Assessment 

Strategy
CLOs

1

Introduction to Signals and 

Systems, Signal 

Classification

Lecture + Visual 

Examples

Class 

Participation, 

Short Quiz

CLO1

2

Basic Signal Operations 

(Time shifting, Scaling, 

Inversion)

Interactive Demo + 

Graphical 

Assignments

Homework + 

Spot Questions
CLO1

3

Elementary Signals: Step, 

Ramp, Exponential, 

Sinusoidal

Matlab Simulation + 

Graph Plotting

Assignment + 

Oral 

Explanation

CLO1

4

Impulse Representation, 

Dirac Delta and Sampling 

Functions

Theory + Simulation Written Quiz

CLO1

, 

CLO2

5

System Classification: 

Static/Dynamic, 

Linear/Nonlinear

Group Discussion + 

Venn Diagrams
Class Test CLO2



COURSE SCHEDULE
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Week Topics
Teaching-Learning 

Strategy

Assessment 

Strategy
CLOs

6
Linearity, Time Invariance, 

Causality, Memory

Case Studies + 

Examples

Viva + 

Problem 

Solving

CLO2

7

System Stability, 

Invertibility and 

Representations

Problem-Based 

Learning
Written Test CLO2

8
Order of System and 

System Equation Types

Lecture + MATLAB 

Scripts

Homework + 

Coding 

Assignment

CLO3

9

Solution Techniques: 

Homogeneous/Particular 

Solutions

Solved Examples Quiz CLO3

10
Zero Input & Zero State 

Response

Interactive Problem 

Solving
Class Test CLO3



COURSE SCHEDULE
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Week Topics
Teaching-Learning 

Strategy

Assessment 

Strategy
CLOs

11
Impulse Response and 

Convolution Integral

Visualization + 

Analytical Solutions

Problem Sheet 

+ Viva
CLO3

12
System Properties from 

Impulse Response
MATLAB Analysis

Assignment + 

Spot Test
CLO3

13
State Variables and State 

Equations

Block Diagram 

Explanation + 

MATLAB

Assignment + 

Viva
CLO3

14
Time Domain State-Space 

Solution
Numerical Methods

Assignment + 

Quiz
CLO3

15
Fourier Series and 

Properties

Derivation + 

Simulation
Written Quiz CLO3



COURSE SCHEDULE
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Week Topics
Teaching-Learning 

Strategy

Assessment 

Strategy
CLOs

16
System Frequency 

Response, Bode Plots

Graphical and 

MATLAB
Class Test

CLO1

, 

CLO4

17
Fourier Transform and 

Properties

Analytical 

Derivation + Code 

Demo

Mid-Term CLO4

18
Laplace Transform: 

Properties and Inverse

Problem Solving + 

Demos

Spot Questions 

+ Assignment
CLO4

19
Transfer Function and 

System Analysis

Lecture + 

Application 

Scenarios

Class 

Participation
CLO4

20

Final Review: Stability, 

Frequency Response, 

Applications

Concept Mapping + 

Open Q&A
Final Exam

CLO1

, 

CLO4



REFERENCE BOOK
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Video Lecture Playlist
https://youtube.com/playlist?list=PLgluYk4ut4L2
RtIIyH42cVX6JZUUVHYzI&si=vx1s1InIIij7ywG6

Fundamentals of Electric 

Circuits (7th Edition ) by 

Charles K. Alexander & Mathew 

N. O. Sadiku.

Linear Circuit Analysis: 

Time Domain, Phasor, and 

Laplace Transform 

Approaches by Raymond A. 

DeCarlo

https://youtube.com/playlist?list=PLgluYk4ut4L2RtIIyH42cVX6JZUUVHYzI&si=vx1s1InIIij7ywG6
https://youtube.com/playlist?list=PLgluYk4ut4L2RtIIyH42cVX6JZUUVHYzI&si=vx1s1InIIij7ywG6


Bloom Taxonomy Cognitive Domain Action Verbs

Remembering 

(C1)

Choose • Define • Find • How • Label • List • Match • Name • Omit • Recall • Relate • 

Select • Show • Spell • Tell • What • When • Where • Which • Who • Why

Understanding 

(C2)

Classify • Compare • Contrast • Demonstrate • Explain • Extend • Illustrate • Infer • 

Interpret • Outline • Relate • Rephrase • Show • Summarize • Translate

Applying (C3)
Apply • Build • Choose • Construct • Develop • Experiment with • Identify • Interview 

• Make use of • Model • Organize • Plan • Select • Solve • Utilize

Analyzing (C4)

Analyze • Assume • Categorize • Classify • Compare • Conclusion • Contrast • 

Discover • Dissect • Distinguish • Divide • Examine • Function • Inference • Inspect • 

List • Motive • Relationships • Simplify • Survey • Take part in • Test for • Theme

Evaluating 

(C5)

Agree • Appraise • Assess • Award • Choose • Compare • Conclude • Criteria • 

Criticize • Decide • Deduct • Defend • Determine • Disprove • Estimate • Evaluate • 

Explain • Importance • Influence • Interpret • Judge • Justify • Mark • Measure • 

Opinion • Perceive • Prioritize • Prove • Rate • Recommend • Rule on • Select • 

Support • Value

Creating (C6)

Adapt • Build • Change • Choose • Combine • Compile • Compose • Construct • 

Create • Delete • Design • Develop • Discuss • Elaborate • Estimate • Formulate • 

Happen • Imagine • Improve • Invent • Make up • Maximize • Minimize • Modify • 

Original • Originate • Plan • Predict • Propose • Solution • Solve • Suppose • Test • 

Theory
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Week 1
Slide 16-
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Different Types of Signals

17
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• Type of Independent Variable

18
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Cervical MRI
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Independent Variable Dimensionality

Prepared by Noor Md Shahriar



21

Continuous Time (CT) and Discrete-Time (DT) 
Signals
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Bounded and Unbounded Signals
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Periodic and A-periodic Signals
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Right- and Left-Sided Signals

34
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Week 2
Slide 36-

50
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Unit Impulse Function
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Narrow Pulse Approximation
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Uses of the Unit Impulse
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Unit Step Function
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Successive Integrations of the Unit 
Impulse Function
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Building Block Signals can be used to 
create a rich variety of Signals
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Conclusions
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Week 3
Slide 51-

66
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Outline - Systems

• How do we construct complex systems

– Using Hierarchy

– Composing simpler elements

• System Representations

– Physical, differential/difference Equations, etc.

• System Properties

– Causality, Linearity and Time-Invariance
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Hierarchical Design
Robot Car



Robot Car Block Diagram

Top Level of Abstraction



Wheel Position Controller Block Diagram

2nd Level of the Hierarchy



Motor Dynamics Differential Equations

3nd Level of the Hierarchy
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Observations

• If we “flatten” the hierarchy, the 
system becomes very complex

• Human designed systems are often 
created hierarchically.

• Block input/output relations provide 
communication mechanisms for team 
projects
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Compositional Design

Mechanics - Sum Element Forces 
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Circuit - Sum Element Currents 
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Differential Equation representation
– Mechanical and Electrical Systems Dynamically 

Analogous

– Can reason about the system using either 
physical representation.

System Representation
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Integrator-Adder-Gain Block Diagram
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Four Representations for the same 
dynamic behavior

Pick the representation that makes 
it easiest to solve the problem
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Discrete-Time Example - Blurred Mandril

Blurrer (system 
model)

Deblurrer System

Original 
Image

Blurred 
Image

Deblurred 
Image
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How do we get                      ?

• Difference Equation Representation of the 
model of a Blurring System

• Deblurring System

Difference Equation Representation
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• The difference equation is a formula for computing an output sample 
at time  based on past and present input samples and past output 
samples in the time domain: 

65
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Observations

• CT System representations include circuit and 
mechanical analogies, differential equations, 
and Integrator-Adder-Gain block diagram.

• Discrete-Time Systems can be represented by 
difference equations.

• The Difference Equation representation does 
not help us design the mandril deblurring

• New representations and tools for manipulating 
are needed!

Prepared by Noor Md Shahriar
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Week 4 Slide 68-83



• Important practical/physical implications

• Help us select appropriate 
representations

• They provide us with insight and 
structure that we can exploit both to 
analyze and understand systems more 
deeply.

System Properties
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Causal and Non-causal Systems
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• A system is causal if the output does not anticipate future 
values of the input, i.e., if the output at any time depends 
only on values of the input up to that time. 

• All real-time physical systems are causal, because time only 
moves forward. Effect occurs after cause. (Imagine if you 
own a noncausal system whose output depends on 
tomorrow’s stock price.)

• Causality does not apply to spatially varying signals. (We can 
move both left and right, up and down.)

• Causality does not apply to systems processing recorded 
signals, e.g. taped sports games vs. live broadcast.

Observations on Causality
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Linearity
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• Superposition
If

Then

Key Property of Linear Systems



• A linear system is causal if and only if it satisfies the 
conditions of initial rest: 

Linearity and Causality 



• Mathematically (in DT): A system x[n] →  y[n] is TI if for 
any input x[n] and any time shift n0,  

• Similarly for CT time-invariant system,  

If         x[n] → y[n]
 then  x[n - n0] → y[n - n0] .

 If         x(t) → y(t)
  then   x(t - to) → y(t - to) .

Time-Invariance



These are the

same input!

Fact: If the input to a TI System is periodic, then the output is periodic with the same 
period. 

“Proof”: Suppose x(t + T) = x(t)  
  and  x(t) → y(t)
    

  Then by TI
      

    x(t + T)  →  y(t + T). 
     

                   

So these must be
the same output,
i.e., y(t) = y(t + T). 

Interesting Observation
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Example - Multiplier
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Multiplier Linearity
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Multiplier – Time Varying
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Example – Constant Addition
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• Focus of most of this course

 - Practical importance

 - The powerful analysis tools associated
    with LTI systems

• A basic fact: If we know the response of an LTI system to 
some inputs, we actually know the response to many inputs

Linear Time-Invariant (LTI) Systems
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Example – DT LTI System
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Conclusions
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Week 6 Slide 107-124



Amazing Property of LTI Systems

107
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Outline
• Superposition Sum for DT Systems

– Representing Inputs as sums of unit samples

– Using the Unit Sample Response

• Superposition Integral for CT System
– Use limit of tall narrow pulse

• Unit Sample/Impulse Response and 
Systems
– Causality, Memory, Stability

108
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Representing DT Signals with Sums of Unit Samples



Written Analytically

110

Coefficients  Basic Signals

Note the Sifting Property of the Unit Sample
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The Superposition Sum for DT Systems

Graphic View of Superposition Sum



Derivation of Superposition Sum

112
Prepared by Noor Md Shahriar



Convolution Sum
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Convolution Notation

Notation is confusing, should not have [n]

          takes two sequences and produces a third sequence

                                   makes more sense  

 Learn to live with it.              
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Convolution Computation Mechanics 

115
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DT Convolution Properties
Commutative Property
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Associative Property
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Distributive Property

+
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Delay Accumulation
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Superposition Integral for CT Systems

Graphic View of Staircase Approximation
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Tall Narrow Pulse

121
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Derivation of Staircase Approximation of 
Superposition Integral
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The Superposition Integral
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Sifting Property of Unit Impulse
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Week 7 Slide 126-138
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CT Convolution Mechanics
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CT Convolution Properties
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Computing Unit Sample/Impulse Responses
Circuit Example
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Narrow pulse approach

129
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Narrow pulse response 
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Narrow pulse response 
cont’d 
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Convergence of Narrow pulse 
response 

Prepared by Noor Md Shahriar



133

Alternative Approach – Use 
Differentiation
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Alternative Approach – Use 
Differentiation cont’d
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How to measure Impulse Responses
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Unit Sample/Impulse Responses of 
Different Classes of Systems
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Bounded-Input Bounded-Output Stability
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Conclusions
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Fourier Series & The Fourier Transform

What is the Fourier Transform?

Anharmonic Waves

Fourier Cosine Series for even 
functions

Fourier Sine Series for odd functions

The continuous limit:  the Fourier 
transform (and its inverse)

Some transform examples

( ) ( ) exp( )F f t i t dt 



−

= −
1

( ) ( ) exp ( )
2

f t F i t d  




−

= 
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What do we hope to achieve with the Fourier 
Transform?

We desire a measure of the frequencies present in a wave.  This will

lead to a definition of the term, the spectrum.

Plane waves have only 
one frequency, .

This light wave has many 
frequencies.  And the 
frequency increases in 
time (from red to blue).

It will be nice if our measure also tells us when each frequency occurs.

Li
gh

t 
el

ec
tr

ic
 f

ie
ld

Time

141



Lord Kelvin on Fourier’s theorem

Fourier’s theorem is not 

only one of the most 

beautiful results of 

modern analysis, but it 

may be said to furnish an 

indispensable instrument 

in the treatment of nearly 

every recondite question 

in modern physics.

                       Lord Kelvin
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Joseph Fourier

Fourier was obsessed 
with the physics of heat 
and developed the 
Fourier series and 
transform to model 
heat-flow problems.

Joseph Fourier 1768 - 1830
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Anharmonic waves are sums of sinusoids.

Consider the sum of two sine waves (i.e., harmonic 

waves) of different frequencies:

The resulting wave is periodic, but not harmonic.  
Essentially all waves are anharmonic.
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Introduction to Fourier Series

)(xf

=

( )xaa cos10 +

( )xa 2cos... 2+

( )xa 3cos... 3+

( ) ...cos... ++ nxan

...



Fourier series

• A Fourier series is a convenient 

representation of a periodic 

function.

• A Fourier series consists of a 

sum of sines and cosine terms.

• Sines and cosines are the most 

fundamental periodic functions.
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Fourier series

• The formula for a Fourier series 

is: 


=

=
















+








+=

n

n

nn
T

xn
b

T

xn
aaxf

1

0

2
sin

2
cos)(


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Fourier series

• We have formulae for the 

coefficients (for the derivations 

see the course notes):


−

=
2

2

0 )(
1

T

T

dxxf
T

a


−





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
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2

2
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T

T
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T
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T
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


−









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2

2
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T

T
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T

xn
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T
b


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Fourier series - Orthogonality

• One very important property of sines and 

cosines is their orthogonality, expressed 

by:









=



=

















− mn
T

mn

dx
T

xm

T

xn

T

T

2

0

2
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2
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2

2
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
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




=



=











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




− mn
T
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dx
T

xm

T

xn

T

T

2

0
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
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








−



These formulae are used in the derivation of the 
formulae for

nn ba ,
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Example – Fourier series

• Example – Find the coefficients 

for the Fourier series of:

)()2(

0

0
)(

xfxf

xx

xx
xf

=+







−−
=







 ( )f x  

x 
0 2  4  

  

Fundamental
range

Period = 2π 
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Example – Fourier series

• Find 0a


−

=
2

2

0 )(
1

T

T

dxxf
T

a 
−

=






dxxfa )(
2

1
0

=




0

0

1
xdxa

2
0


= a

f (x) is an even function so:


−

=






dxxfa )(
2

1
0 =




0

0 )(
1

dxxfa




0

2

0
2

1








=

x
a
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Example – Fourier series

• Find na


−









=

2

2

2
cos)(

2

T

T

n dx
T

xn
xf

T
a




−









=









dx

xn
xfan

2

2
cos)(

1

Since both functions are even their product is 
even:

( )
−

=






dxnxxfan cos)(
1

( )=




0

cos
2

dxnxxan
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Example – Fourier series

• Find nb


−









=

2

2

2
sin)(

2

T

T

n dx
T

xn
xf

T
b




−









=









dx

xn
xfbn

2

2
sin)(

1

Since sine is an odd function and f (x) is an even 
function, the product of the functions is odd:

( )
−

=






dxnxxfbn sin)(
1

0= nb
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Example – Fourier series

• So we can put the coefficients 
back into the Fourier series 
formula:


=

=
















+








+=

n

n

nn
T

xn
b

T

xn
aaxf

1

0

2
sin

2
cos)(



( )( ) ( )
=

=









−−+=

n

n

n
nx

n
xf

1
2

cos11
2

2
)(





( ) ( ) +−+−= xxxf 3cos
9

4
0cos

4

2
)(




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Easy ways of finding Fourier 
coefficients

• There are some easy shortcuts for 

finding the Fourier coefficients.

• We can see that:


−

=
2

2

0 )(
1

T

T

dxxf
T

a

is just the area under the fundamental 
range divided by the period.
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Summary of finding coefficients

function

even

function

odd

function

neither

0a

na

nb

0)(
1 2

2

0 == 
−

T

T

dxxf
T

a


−









=

2

2

2
cos)(

2

T

T

n dx
T

xn
xf

T
a



Though maybe easy to find 
using geometry


−









=

2

2

2
sin)(

2

T

T

n dx
T

xn
xf

T
b




−









=

2

2

2
sin)(

2

T

T

n dx
T

xn
xf

T
b



0

0
0)(

1 2

2

0 == 
−

T

T

dxxf
T

a


−









=

2

2

2
cos)(

2

T

T

n dx
T

xn
xf

T
a



Though maybe easy to find 
using geometry

0
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Partial Sums

• The Fourier series gives the 

exact value of the function.

• However, it uses an infinite 

number of terms, so is 

impossible to calculate.

• We can evaluate the partial 

sums of a Fourier series by only 

evaluating a set number of the 

terms.
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Partial Sums

• For partial sums we use the 

notation: 

( ) 
=

=
















+








+=

Nn

n

nnN
T

xn
b

T

xn
aaxS

1

0

2
sin

2
cos



To represent a partial sum with N terms. 
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Example 1 – Partial Sums

• Compare the plots of the partial 

sums with the original function:

5=N 11=N

1=N 3=N
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Example 1 – Partial Sums

• Compare the plots of the partial 

sums with the original function:

100=N 1000=N
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Example 1 – Partial Sums

• Compare the plots of the partial 

sums with the original function:

9=N 25=N

1=N 3=N
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The Fourier Transform 

Consider the Fourier coefficients.  Let’s define a function F(m) that 

incorporates both cosine and sine series coefficients, with the sine 

series distinguished by making it the imaginary component:

Let’s now allow f(t) to range from  – to  so we’ll have to integrate 

from – to , and let’s redefine m to be the “frequency,” which we’ll 
now call :

F() is called the Fourier Transform of f(t). It contains equivalent 

information to that in f(t).  We say that f(t) lives in the time domain, 

and F() lives in the frequency domain. F() is just another way of 

looking at a function or wave.

( ) cos( )f t mt dt ( ) sin( )i f t mt dt− F(m)      Fm –  i F’m = 

( ) ( ) exp ( )F f t i t dt 



−

= −
The Fourier
Transform 
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The Inverse Fourier Transform 

The Fourier Transform takes us from f(t) to F().  
How about going back?

Recall our formula for the Fourier Series of f(t) :

Now transform the sums to integrals from – to , and again replace 
Fm  with F().  Remembering the fact that we introduced a factor of i 
(and including a factor of 2 that just crops up), we have:

'

0 0

1 1
( ) cos( ) sin( )m m

m m

f t F mt F mt
 

 

= =

= + 

1
( ) ( ) exp( )

2
f t F i t d  





−

=  Inverse 
Fourier 
Transform 164



The Fourier Transform and its Inverse 

The Fourier Transform and its Inverse:

  

So we can transform to the frequency domain and back.  
Interestingly, these transformations are very similar.  

There are different definitions of these transforms.  The 2π can 
occur in several places, but the idea is generally the same.

Inverse Fourier Transform

FourierTransform ( ) ( ) exp( )F f t i t dt 



−

= −

1
( ) ( ) exp( )

2
f t F i t d  





−

= 
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Fourier Transform Notation

There are several ways to denote the Fourier transform of a 
function.

If the function is labeled by a lower-case letter, such as f,  
we can write:

   f(t)  → F()

If the function is already labeled by an upper-case letter, such as E, 
we can write:

    or: 



( ) ( )E t E →( ) { ( )}E t E t→F

∩Sometimes, this symbol is 
used instead of the arrow:
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Example:  the Fourier Transform of a
rectangle function:  rect(t)

1/ 2

1/ 2

1/ 2

1/ 2

1
( ) exp( ) [exp( )]

1
[exp( / 2) exp(

exp( / 2) exp(

2

sin(

F i t dt i t
i

i i
i

i i

i

  


 


 







−

−

= − = −
−

= − − )
−

 − − )
=

( )

)
=

( )



( sinc(F  ) = ) Imaginary 
Component = 0

F()


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Sinc(x) and why it's important

Sinc(x/2) is the Fourier 

transform of a rectangle 

function.

Sinc2(x/2) is the Fourier 

transform of a triangle 

function.

Sinc2(ax) is the diffraction 

pattern from a slit.

It just crops up 

everywhere...
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The Fourier Transform of the triangle
function, (t), is sinc2()

0

2sinc ( / 2)
1

t0

( )t
1

1/2-1/2

The triangle function is just what it sounds like.  

∩

We’ll prove this when we learn about convolution.

Sometimes 
people use 

(t), too, for 
the triangle 

function.
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Example:  the Fourier Transform of a
decaying exponential:  exp(-at)  (t > 0)

0

0 0

0

( exp( )exp( )

exp( ) exp( [ )

1 1
exp( [ ) [exp( ) exp(0)]

1
[0 1]

1

F at i t dt

at i t dt a i t dt

a i t
a i a i

a i

a i

 

 


 







 

+

) = − −

= − − = − + 

− −
= − +  = − −

+ +

−
= −

+

=
+



 
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Example:  the Fourier Transform of a
Gaussian, exp(-at2), is itself!

2 2

2

{exp( )} exp( )exp( )

exp( / 4 )

at at i t dt

a







−

− = − −

 −

F

t0

2exp( )at−

0

2exp( / 4 )a−

The details are a HW problem!

∩
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

()

The Fourier Transform of (t) is 1.

1exp( ) 2 (i t dt   


−

− = )And the Fourier Transform of 1 is ():

( ) exp( ) exp( [0]) 1t i t dt i  


−

− = − =

t

(t)





t



0

0
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The Fourier transform of exp(i0 t)

 0 0exp( ) exp( ) exp( )i t i t i t dt  



−

= −F

0exp( [ ] )i t dt 



−

= − −

The function exp(i0t) is the essential component of Fourier analysis.  It is 

a pure frequency. 

F   {exp(i0t)} 

  
 

02 ( )   = −

exp(i0t) 

 
t 

t Re

Im

 
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The Fourier transform of cos( t)

 0 0cos( ) cos( ) exp( )t t i t dt  



−

= −F

 0 0

1
exp( ) exp( ) exp( )

2
i t i t i t dt  



−

= + − −

0 0

1 1
exp( [ ] ) exp( [ ] )

2 2
i t dt i t dt   

 

− −

= − − + − + 

0 0( ) ( )       = − + +

+  − 
 

0{cos( )}tFcos(0t) 

t 
 
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Fourier Transform Symmetry Properties

Expanding the Fourier transform of a function, f(t):

( ) Re{ ( )} cos( ) Im{ ( )} sin( )F f t t dt f t t dt  

 

− −

= +  Re{F()}

Im{F()}

 

= 0 if Re{f(t)} is odd             = 0 if Im{f(t)} is even

Even functions of  Odd functions of  

( ) [Re{ ( )} Im{ ( )}] [cos( ) sin( )]F f t i f t t i t dt  



−

= + −

Im{ ( )} cos( ) Re{ ( )} sin( )i f t t dt i f t t dt 

 

− −

+ − 

= 0 if Im{f(t)} is odd             = 0 if Re{f(t)} is even

 

Expanding more, noting that: ( ) 0O t dt



−

= if O(t) is an odd function
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Some functions don’t have Fourier transforms. 

The condition for the existence of a given F() is:

Functions that do not asymptote to zero in both the + and – 

directions generally do not have Fourier transforms.

So we’ll assume that all functions of interest go to zero at ±.

( )f t dt



−

 
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Periodic Functions

A function ( )f is periodic

if it is defined for all real 
and if there is some positive number, 

T such that ( ) ( ) fTf =+ .
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0


T

f ( )
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0


T

f ( )
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0


T

f ( )
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Fourier Series

( )f be a periodic function with period 2

The function can be represented by a 
trigonometric series as:

( ) 


=



=

++=
11

0 sincos
n

n

n

n nbnaaf 
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( ) 


=



=

++=
11

0 sincos
n

n

n

n nbnaaf 

What kind of trigonometric (series) functions are we 
talking about?









32

and32

sin,sin,sin

cos,cos,cos
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0

0

 

cos  cos  cos 3
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0

0  

sin  sin  sin 3
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We want to determine the coefficients, 

na and
nb .

Let us first remember some useful integrations.
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( ) ( )



−−

−

−++=
















dmndmn

dmn

cos
2

1
cos

2

1

coscos

0=


−

dmn coscos mn 

=


−

dmn coscos mn =
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( ) ( )



−−

−

−++=
















dmndmn

dmn

sin
2

1
sin

2

1

cossin

0=


−

dmn cossin

for all values of m.
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( ) ( )



−−

−

+−−=
















dmndmn

dmn

cos
2

1
cos

2

1

sinsin

0=


−

dmn sinsin mn 

=


−

dmn sinsin mn =
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Determine
0a

Integrate both sides of (1) from 

− to 

( )













dnbnaa

df

n

n

n

n 



−



=



=

−









++=

11

0 sincos
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( )























dnb

dnada

df

n

n

n

n

 

 



−



=

−



=
−

−









+









+=

1

1

0

sin

cos

( ) 000 ++= 
−−









dadf
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( ) 002 0 ++=


−

adf

( ) 


= 


−

dfa
2

1
0

0a is the average (dc) value of the

function, ( )f .
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( )









dnbnaa

df

n

n

n

n 











++=



=



=

2

0
11

0

2

0

sincos

It is alright as long as the integration is 
performed over one period.

You may integrate both sides of (1) from 

0 to 2 instead.
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( )













dnb

dnada

df

n

n

n

n

 

 











+









+=



=



=

2

0
1

2

0
1

2

0
0

2

0

sin

cos

( ) 00
2

0
0

2

0
++=  



dadf
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( ) 002 0

2

0
++= adf 



( ) 




dfa =
2

0
0

2

1
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Determine
na

Multiply (1) by mcos

and then Integrate both sides  from 

− to 

( )













dmnbnaa

dmf

n

n

n

n 



−



=



=

−









++= cossincos

cos

11

0
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Let us do the integration on the right-hand-side one 
term at a time.

First term, 




−

= 00 dma cos

Second term, 

 


−



=

dmna

n

n coscos

1
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



m

n

n admna = 
−



=

coscos
1

Second term, 

Third term, 

0
1

= 
−



=





dmcosnsinb

n

n
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Therefore,

( ) 



madmf =

−
cos

( ) ,2,1cos
1

== 
−

mdmfam 





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Determine
nb

Multiply (1) by msin

and then Integrate both sides  from 

− to 

( )













dmsinnsinbncosaa

dmsinf

n

n

n

n 



−



=



=

−









++=

11

0
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Let us do the integration on the right-hand-side one 
term at a time.

First term, 


−

=



 00 dmsina

Second term, 





dmsinncosa

n

n 
−



=1
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0
1

= 
−



=





dmsinncosa

n

n

Second term, 

Third term, 





m

n

n bdmnb = 
−



=

sinsin
1
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Therefore,

( ) 



mbdmsinf =

−

( ) ,,mdmsinfbm 21
1

== 
−







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( ) 


= 


−

dfa
2

1
0

The coefficients are:

( ) ,2,1cos
1

== 
−

mdmfam 






( ) ,2,1sin
1

== 
−

mdmfbm 





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( ) 


= 


−

dfa
2

1
0

We can write n in place of m:

( ) ,,ndncosfan 21
1

== 
−








( ) ,,ndnsinfbn 21
1

== 
−







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The integrations can be performed from 

0 to 2 instead.

( ) 




dfa =
2

0
0

2

1

( ) ,,ndncosfan 21
1 2

0
==  





( ) ,,ndnsinfbn 21
1 2

0
==  




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Example 1. Find the Fourier series of the 
following periodic function. 

0


f ( )

  3 4 5

A

-A

( )

−=

=

2

0

whenA

whenAf

( ) ( ) ff =+ 2
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( )

( ) ( )

0

2

1

2

1

2

1

2

0

2

0

2

0
0

=





 −+=





 +=

=






























dAdA

dfdf

dfa
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( )

( )

0
11

1

1

2

0

2

0

2

0

=







−+








=





 −+=

=

































n

nsin
A

n

nsin
A

dncosAdncosA

dncosfan
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( )

( )

 






























ncosncoscosncos
n

A

n

ncos
A

n

ncos
A

dnsinAdnsinA

dnsinfbn

−++−=









+








−=





 −+=

=





20

11

1

1

2

0

2

0

2

0
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 

 

oddisnwhen
4

1111

20








n

A

n

A

ncosncoscosncos
n

A
bn

=

+++=

−++−=
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 

 

evenisnwhen0

1111

20

=

−++−=

−++−=






n

A

ncosncoscosncos
n

A
bn
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Therefore, the corresponding Fourier series is









++++ 


7sin

7

1
5sin

5

1
3sin

3

1
sin

4A

In writing the Fourier series we may not be able to 
consider infinite number of terms for practical 
reasons.  The question therefore, is – how many 
terms to consider?
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When we consider 4 terms as shown in the previous 
slide, the function looks like the following.

1.5

1

0.5

0

0.5

1

1.5

f ( )


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When we consider 6 terms, the function looks like the 
following.

1.5

1

0.5

0

0.5

1

1.5

f ( )


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When we consider 8 terms, the function looks like the 
following.

1.5

1

0.5

0

0.5

1

1.5

f ( )


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When we consider 12 terms, the function looks like 
the following.

1.5

1

0.5

0

0.5

1

1.5

f ( )


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The red curve was drawn with 12 terms and the 
blue curve was drawn with 4 terms.

1.5

1

0.5

0

0.5

1

1.5


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The red curve was drawn with 12 terms and the 
blue curve was drawn with 4 terms.

0 2 4 6 8 10
1.5

1

0.5

0

0.5

1

1.5

 220



The red curve was drawn with 20 terms and the 
blue curve was drawn with 4 terms.

0 2 4 6 8 10
1.5

1

0.5

0

0.5

1

1.5


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Even and Odd Functions

(We are not talking about even or odd 
numbers.)
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Even Functions



f()

The value of the 
function would be 
the same when we 
walk equal 
distances along the 
X-axis in opposite 
directions.

( ) ( ) ff =−

Mathematically speaking -
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Odd Functions The value of the 
function would 
change its sign but 
with the same 
magnitude when 
we walk equal 
distances along the 
X-axis in opposite 
directions.

( ) ( ) ff −=−

Mathematically speaking -



f()
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Even functions can solely be represented by 
cosine waves because, cosine waves are even 
functions.  A sum of even functions is another 
even function.

10 0 10

5

0

5


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Odd functions can solely be represented by sine 
waves because, sine waves are odd functions.  A 
sum of odd functions is another odd function.

10 0 10

5

0

5


226



The Fourier series of an even function ( )f

is expressed in terms of a cosine series. 

( ) 


=

+=
1

0 cos
n

n naaf 

The Fourier series of an odd function ( )f

is expressed in terms of a sine series. 

( ) 


=

=
1

sin
n

n nbf 
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Example 2. Find the Fourier series of the 
following periodic function. 

( ) ( ) ff =+ 2

x

f(x)

−  3 5 7 90

( )  −= xwhenxxf
2

228



( )

332

1

2

1

2

1

23

2

0


















=







=

==

=

−=

−−


x

x

x

dxxdxxfa
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( )





=

=





−

−

nxdxx

dxnxxfan

cos
1

cos
1

2












Use integration by parts.  Details are shown in 
your class note.
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n
n

an cos
4

2
=

odd is n when
4

2
n

an −=

even is n when
4

2
n

an =

231



This is an even function.  

Therefore, 0=nb

The corresponding Fourier series is 









+−+−− 

222

2

4

4cos

3

3cos

2

2cos
cos4

3

xxx
x


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Functions Having Arbitrary Period

Assume that a function ( )tf  has 

period, T .  We can relate angle 
( ) with time ( t ) in the following 
manner. 

t =

 is the angular velocity in radians per second. 
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f 2=

f is the frequency of the periodic function, 

( )tf

tf 2=
T

f
1

=where

t
T




2
=Therefore,
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t
T




2
= dt

T
d




2
=

Now change the limits of integration.

 −=
2

T
t −=t

T




2
=−

 =
2

T
t =t

T




2
=
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( ) 


= 


−

dfa
2

1
0

( )dttf
T

a

T

T


−

=
2

2

0

1

237



( ) ,,ndncosfan 21
1

== 
−








( ) ,2,1
2

cos
2 2

2

=







= 

−

ndtt
T

n
tf

T
a

T

T

n


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( ) ,,ndnsinfbn 21
1

== 
−








( ) ,2,1
2

sin
2 2

2

=







= 

−

ndtt
T

n
tf

T
b

T

T

n


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Example 3. Find the Fourier series of the 
following periodic function. 

0 t

T/2

f(t)

T/4

3T/4

T-T/2 2T

( )

4

3

42

44

T
t

T
when

T
t

T
t

T
whenttf

+−=

−=
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( ) ( )tfTtf =+

This is an odd function. Therefore, 0=na

( )

( ) dtt
T

n
tf

T

dtt
T

n
tf

T
b

T

T

n









=









=









2
sin

4

2
sin

2

2

0

0
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dtt
T

nT
t

T

dtt
T

n
t

T
b

T

T

T

n

















+−+









=









2
sin

2

4

2
sin

4

2

4

4

0

Use integration by parts.
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







=




























=

2
sin

2

2
sin

2
.2

4

22

2









n

n

T

n

n

T

T
bn

0=nb when n is even.
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Therefore, the Fourier series is 









−







 
+







 
−







 


t

T
t

T
t

T

T 10

5

16

3

122
222

sinsinsin
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The Complex Form of Fourier Series

( ) 


=



=

++=
11

0 sincos
n

n

n

n nbnaaf 

Let us utilize the Euler formulae.

2




jj

ee
cos

−+
=

i

ee
sin

jj

2




−−

=
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The nth harmonic component of (1) can be

expressed as:

i

ee
b

ee
a

nbna

jnjn

n

jnjn

n

nn

22

sincos





−− −
+

+
=

+

22

 jnjn

n

jnjn

n

ee
ib

ee
a

−− −
−

+
=
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



jnnnjnnn

nn

e
jba

e
jba

nbna

−







 +
+







 −
=

+

22

sincos

Denoting








 −
=

2

nn

n

jba
c 







 +
=−

2

nn

n

jba
c,

and
00 ac =

247







jn

n

jn

n

nn

ecec

nsinbncosa

−

−+=

+
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The Fourier series for ( )f
can be expressed as:

( ) ( )






−=



=

−

−

=

++=

n

jn

n

n

jn

n

jn

n

ec

ececcf




1

0
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The coefficients can be evaluated in the 
following manner.

( ) ( ) 












dnf

j
dnf

jba
c nn
n

sin
2

cos
2

1

2


−−

−=








 −
=

( )( )
−

−=






dnjnf sincos

2

1

( )
−

−=




 


def
jn

2

1
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( ) ( ) 












dnf

j
dnf

jba
c nn
n

sin
2

cos
2

1

2


−−

−

+=








 +
=

( )( )
−

+=






dnjnf sincos

2

1

( )
−

=




 


def
jn

2

1
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.








 −
=

2

nn
n

jba
c 







 +
=−

2

nn
n

jba
c

nc−

nc
Note that is the complex conjugate of 

. Hence we may write that 

( )


−

− 


= defc
jn

n
2

1

,,,n 210 =
252



The complex form of the Fourier series of 

( )f 2with period is: 

( ) 


−=

=
n

jn

necf

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Example 1. Find the Fourier series of the 
following periodic function. 

0


f ( )

  3 4 5

A

-A

( )

−=

=

2

0

whenA

whenAf

( ) ( ) ff =+ 2

254



A 5=

f x( ) A 0 x if

A−  x 2 if

0 otherwise

=

A0
1

2 0

2

xf x( )




d=

A0 0=
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n 1 8=

An
1

 0

2

xf x( ) cos n x( )




d=

A1 0= A2 0= A3 0= A4 0=

A5 0= A6 0= A7 0= A8 0=

256



Bn
1

 0

2 

xf x( ) sin n x( )




d=

B1 6.366= B2 0= B3 2.122= B4 0=

B5 1.273= B6 0= B7 0.909= B8 0=
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Complex Form

( ) 


−=

=

n

jn

necf ( )


−

− 


= defc jn

n
2

1

,,, 210 =n

C n( )
1

2  0

2 

xf x( ) e
1i− n x






d=
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C 0( ) 0= C 1( ) 3.183i−= C 2( ) 0= C 3( ) 1.061i−=

C 4( ) 0= C 5( ) 0.637i−= C 6( ) 0= C 7( ) 0.455i−=

C 1−( ) 3.183i= C 2−( ) 0= C 3−( ) 1.061i=

C 4−( ) 0= C 5−( ) 0.637i= C 6−( ) 0= C 7−( ) 0.455i=

C n( )
1

2  0

2 

xf x( ) e
1i− n x






d=
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Laplace Transform

Outline

• In this talk, we will:

– Definition of the Laplace transform

– A few simple transforms

– Rules

– Demonstrations
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• Classical differential equations

Laplace Transform

Background

( )( ) ( )( ) ( ) ( )tttt xyyy 12 =++

( ) tt eet 2

2

1

2

1
y −− +−=

( ) 1x =t

Time Domain

Solve differential equation
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• Laplace transforms

Laplace Transform

Background

( )( ) ( )( ) ( ) ( )tttt xyyy 12 =++

( ) tt eet 2

2

1

2

1
y −− +−=

( )
s

t

ss
s

1
X

23

1
)H(

2

=

++
=

23

11
2 ++ sss

( ) 1x =t

Time Domain Frequency Domain

Solve algebraic equation
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Laplace Transform

Definition

• The Laplace transform is

• Common notation:

( )  ( )

( )s

dtett st

F

ff

0

=

= 


−

−

L

( )  ( )
( )  ( )st

st

Gg

Ff

=

=

L

L ( ) ( )
( ) ( )st

st

Gg

Ff




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Laplace Transform

Definition

• Notation:

– Variables in italics   t, s

– Functions in time space  f, g

– Functions in frequency space F, G

– Specific limits
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Laplace Transform

Existence

• The Laplace transform of f(t) exists if

– The function f(t) is piecewise continuous

– The function is bound by
for some k and M

( ) ktMet −f
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Laplace Transform

Example Transforms

• We will look at the Laplace transforms of:

– The impulse function (t)

– The unit step function u(t)

– The ramp function t and monomials tn

– Polynomials, Taylor series, and et

– Sine and cosine

267



Laplace Transform

Example Transforms

• While deriving these, we will examine certain 
properties:

– Linearity

– Damping

– Time scaling

– Time differentiation

– Frequency differentiation
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Laplace Transform

Impulse Function

• The easiest transform is that of the impulse 
function:
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• Next is the unit step function
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Laplace Transform

Integration by Parts

• Further cases require integration by parts

• Usually written as
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Laplace Transform

Integration by Parts

• Product rule

• Rearrange and integrate
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Laplace Transform

Ramp Function

• The ramp function
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Laplace Transform

Monomials

• By repeated integration-by-parts, it is possible 
to find the formula for a general monomial for 
n ≥ 0
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Laplace Transform

Linearity Property

• The Laplace transform is linear

• If                      and                       then
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Laplace Transform

Initial and Final Values

• Given                   then

• Note sF(s) is the Laplace transform of f(1)(x)
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Laplace Transform

Polynomials

• The Laplace transform of the polynomial 
follows:
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Laplace Transform

Polynomials

• This generalizes to Taylor series, e.g., 
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Laplace Transform

The Sine Function

• Sine requires two integration by parts:
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Laplace Transform

The Sine Function

• Consequently:
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Laplace Transform

The Cosine Function

• As does cosine:

( ) ( )  ( )

( ) ( )

( )

( ) ( )

( )

( ) ( ) tt
ss

dtet
ss

dtet
ss

stet
ss

dtet
ss

dtet
s

stet
s

dtettt

st

st

st

st

st

ucos
11

cos
1

0
1

cos
11

sin
11

sin
11

sin
1

cos
1

cosucos

2

0

22

0

2
0

0

00

0

L

L

−=

−+=














−−−−−=

−=

−−−=

=













−



−





−



−





−

−

−−

−

−−

−

1 of 2
282



Laplace Transform

The Cosine Function

• Consequently:
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Laplace Transform

Damping Property

• Time domain damping ⇔ 
              frequency domain shifting
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Laplace Transform

Damping Property

• Damped monomials

 

 A special case:
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Laplace Transform

Time-Scaling Property

• Time domain scaling ⇔ 
         attenuated frequency domain scaling
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• Time scaling of trigonometric functions:
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Why use Transforms?

• Transforms are not simply math curiosity 
sketched at the corner of a woodstove by ol’ 
Frenchmen.

• Way to reframe a problem in a way that makes 
it easier to understand, analyze and solve.
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General Scheme using Transforms

Problem
Equation

of the problem
Solution

of the equation
Result

Transformation

Inverse
transformation

Transformed
equation

Solution of the
transformed equation

= HARD

= EASY
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Typical Problem

• Given an input signal x(t), what is the output signal 
y(t) after going through the system?

• To solve it in the time domain (t) is 
cumbersome!

System/

Filter
t

x(t)

y(t)?
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Integrating Differential Equation?

• Let’s have a simple first order low-pass filter with 
resistor R and capacitor C:

• The system is described by diff. eq.:

• To find a solution, we can integrate. Ugh!

)()()(' txtytRCy =+

292



Laplace Transform

• Formal definition:

• Compare this to FT:

• Small differences:
– Integral from 0 to  to for Laplace

• f(t) for t<0 is not taken into account

– -s instead of -i
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Common Laplace Transfom
Name f(t) F(s)

Impulse 

Step

Ramp

Exponential

Sine
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Transfer Function H(s)

• Definition

– H(s) = Y(s) / X(s)

• Relates the output of a linear system (or 
component) to its input.

• Describes how a linear system responds to an 
impulse.

• All linear operations allowed

– Scaling, addition, multiplication.

H(s)X(s) Y(s)
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RC Circuit Revisited
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Vo=V(t)+R I(t)
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Laplace for Circuits
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A Simple Example: Capacitor Charging 
Equation
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Inductor Differential Equation
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Transfer Function of Low Pass RC Filter
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Capacitive Reactance
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Transfer Function of Low Pass LR Filter

309


	Slide 1: Signals and Systems EEE 0714-3201
	Slide 2
	Slide 3
	Slide 4: Continuous Assessment  Strategy
	Slide 5
	Slide 6: Course Learning Outcome (CLO)
	Slide 7: SYNOPSIS / RATIONALE
	Slide 8: Course Objective
	Slide 9: COURSE OUTLINE
	Slide 10: COURSE SCHEDULE
	Slide 11: COURSE SCHEDULE
	Slide 12: COURSE SCHEDULE
	Slide 13: COURSE SCHEDULE
	Slide 14: REFERENCE BOOK
	Slide 15: Bloom Taxonomy Cognitive Domain Action Verbs
	Slide 16
	Slide 17: Different Types of Signals
	Slide 18
	Slide 19
	Slide 20: Independent Variable Dimensionality
	Slide 21: Continuous Time (CT) and Discrete-Time (DT) Signals
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Periodic and A-periodic Signals
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Conclusions
	Slide 51
	Slide 52: Outline - Systems
	Slide 53: Hierarchical Design
	Slide 54: Robot Car Block Diagram
	Slide 55: Wheel Position Controller Block Diagram
	Slide 56: Motor Dynamics Differential Equations
	Slide 57: Observations
	Slide 58
	Slide 59
	Slide 60: System Representation
	Slide 61: Integrator-Adder-Gain Block Diagram
	Slide 62: Four Representations for the same dynamic behavior
	Slide 63: Discrete-Time Example - Blurred Mandril
	Slide 64: Difference Equation Representation
	Slide 65
	Slide 66: Observations
	Slide 67
	Slide 68: System Properties
	Slide 69: Causal and Non-causal Systems
	Slide 70: Observations on Causality
	Slide 71: Linearity
	Slide 72: Key Property of Linear Systems
	Slide 73: Linearity and Causality 
	Slide 74: Time-Invariance
	Slide 75: Interesting Observation
	Slide 76: Example - Multiplier
	Slide 77: Multiplier Linearity
	Slide 78: Multiplier – Time Varying
	Slide 79: Example – Constant Addition
	Slide 80
	Slide 81: Linear Time-Invariant (LTI) Systems
	Slide 82: Example – DT LTI System
	Slide 83: Conclusions
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Amazing Property of LTI Systems
	Slide 108: Outline
	Slide 109: Representing DT Signals with Sums of Unit Samples
	Slide 110: Written Analytically
	Slide 111: The Superposition Sum for DT Systems
	Slide 112: Derivation of Superposition Sum
	Slide 113: Convolution Sum
	Slide 114: Convolution Notation
	Slide 115: Convolution Computation Mechanics 
	Slide 116: DT Convolution Properties
	Slide 117: Associative Property
	Slide 118
	Slide 119
	Slide 120: Superposition Integral for CT Systems
	Slide 121: Tall Narrow Pulse
	Slide 122: Derivation of Staircase Approximation of Superposition Integral
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128: Computing Unit Sample/Impulse Responses
	Slide 129: Narrow pulse approach
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138: Conclusions
	Slide 139
	Slide 140: Fourier Series & The Fourier Transform 
	Slide 141: What do we hope to achieve with the Fourier Transform?
	Slide 142: Lord Kelvin on Fourier’s theorem
	Slide 143: Joseph Fourier
	Slide 144: Anharmonic waves are sums of sinusoids.
	Slide 145: Introduction to Fourier Series
	Slide 146: Fourier series
	Slide 147: Fourier series
	Slide 148: Fourier series
	Slide 149: Fourier series - Orthogonality
	Slide 150: Example – Fourier series
	Slide 151: Example – Fourier series
	Slide 152: Example – Fourier series
	Slide 153: Example – Fourier series
	Slide 154: Example – Fourier series
	Slide 155: Easy ways of finding Fourier coefficients
	Slide 156: Summary of finding coefficients
	Slide 157
	Slide 158: Partial Sums
	Slide 159: Partial Sums
	Slide 160: Example 1 – Partial Sums
	Slide 161: Example 1 – Partial Sums
	Slide 162: Example 1 – Partial Sums
	Slide 163: The Fourier Transform 
	Slide 164: The Inverse Fourier Transform 
	Slide 165: The Fourier Transform and its Inverse 
	Slide 166: Fourier Transform Notation
	Slide 167: Example:  the Fourier Transform of a rectangle function:  rect(t)
	Slide 168: Sinc(x) and why it's important
	Slide 169: The Fourier Transform of the triangle function, D(t), is sinc2(w/2)
	Slide 170: Example:  the Fourier Transform of a decaying exponential:  exp(-at)  (t > 0)
	Slide 171: Example:  the Fourier Transform of a Gaussian, exp(-at2), is itself!
	Slide 172: The Fourier Transform of d(t) is 1.
	Slide 173: The Fourier transform of exp(iw0 t)
	Slide 174: The Fourier transform of cos(w0 t) 
	Slide 175: Fourier Transform Symmetry Properties
	Slide 176: Some functions don’t have Fourier transforms. 
	Slide 177
	Slide 178: Periodic Functions
	Slide 179
	Slide 180
	Slide 181
	Slide 182: Fourier Series
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261: Laplace Transform Outline
	Slide 262: Laplace Transform Background
	Slide 263: Laplace Transform Background
	Slide 264: Laplace Transform Definition
	Slide 265: Laplace Transform Definition
	Slide 266: Laplace Transform Existence
	Slide 267: Laplace Transform Example Transforms
	Slide 268: Laplace Transform Example Transforms
	Slide 269: Laplace Transform Impulse Function
	Slide 270: Laplace Transform Unit Step Function
	Slide 271: Laplace Transform Integration by Parts
	Slide 272: Laplace Transform Integration by Parts
	Slide 273: Laplace Transform Ramp Function
	Slide 274: Laplace Transform Monomials
	Slide 275: Laplace Transform Linearity Property
	Slide 276: Laplace Transform Initial and Final Values
	Slide 277: Laplace Transform Polynomials
	Slide 278: Laplace Transform Polynomials
	Slide 279
	Slide 280: Laplace Transform The Sine Function
	Slide 281: Laplace Transform The Sine Function
	Slide 282: Laplace Transform The Cosine Function
	Slide 283: Laplace Transform The Cosine Function
	Slide 284: Laplace Transform Damping Property
	Slide 285: Laplace Transform Damping Property
	Slide 286: Laplace Transform Time-Scaling Property
	Slide 287: Laplace Transform Time-Scaling Property
	Slide 288: Why use Transforms?
	Slide 289: General Scheme using Transforms
	Slide 290
	Slide 291: Typical Problem
	Slide 292: Integrating Differential Equation?
	Slide 293: Laplace Transform
	Slide 294: Common Laplace Transfom
	Slide 295: Transfer Function H(s)
	Slide 296: RC Circuit Revisited
	Slide 297
	Slide 298
	Slide 299: Laplace for Circuits
	Slide 300
	Slide 301: A Simple Example: Capacitor Charging Equation
	Slide 302
	Slide 303: Inductor Differential Equation
	Slide 304
	Slide 305: Transfer Function of Low Pass RC Filter
	Slide 306: Capacitive Reactance
	Slide 307
	Slide 308
	Slide 309: Transfer Function of Low Pass LR Filter

