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Course Name: Signals & Systems(EEE 0714-3201)

3 Credit Course

Class: 17 weeks (2 classes per week)
=34 Hours

Preparation Leave (PL): 02 weeks

Exam: 04 weeks

Results: 02 weeks

Total: 25 Weeks

Attendance:

Students with more than or equal to 80% attendance in this course will
be eligible to sit for the Semester End Examination (SEE). SEE is
mandatory for all students.
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Continuous Assessment Strategy

Altogether 4 quizzes may be taken
during the semester, 2 quizzes will be
taken for midterm and 2 quizzes will
be taken for final term.

Altogether 2 assignments may be
taken during the semester, 1
assignments will be taken for
midterm and 1 assignments will be
taken for final term.

The students will have to form a
group of maximum 3 members.
The topic of the presentation will
be given to each group and students
will have to do the group
presentation on the given topic.
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ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (90 Marks) SEE- Semester End
Examination (60 Marks)

Bloom’s Quizzes E.x.tern_al : Bloom’s Tests
Category (15) Participation in
Curricular/Co- Category
Marks :
Curricular Remember 10

(out of 50) Activities (15) Understand 10
Remember 08 08 glc(:rcr)‘r;:'Affective Apply 10
SIC ErSE b v (Attitude or will) Analyze 10
Apply 08 Attendance: 15
Analvze 08 Copy or attempt to Evaluate 10

y copy: —-10 Late Create 10
Evaluate 08 Assignment: -10
Create 05
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Course Learning Outcome (CLO)

Serial No. | Course Learning Outcome (CLO) Blooms

Taxonomy Level

CLO-1 Understand the concept of signals and 1,2
systems in time, frequency and Laplace Remembering,
domain Understanding
CLO-2 Explain different properties of systems and 3
signals Applying
CLO-3 Analize responses of LTI systems for 4
different applications Analyzing
CLO-4 Investigate the stability of LTI systems 1,2,5
Remembering,
Understanding,
Creating
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SYNOPSIS / RATIONALE

This course lays the foundation for understanding how
signals (functions that convey information) interact with
systems (entities that process these signals). It explores
both  continuous-time and  discrete-time  signal
representations, system properties (such as linearity and
stability), and mathematical tools like convolution,
Fourier series, Laplace transforms, and state-space
methods. The concepts introduced are central to
advanced topics such as Digital Signal Processing,
Control Systems, and Communication Systems.
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Course Objective

Analyze and classify various types of signals and systems using mathematical
and graphical representations.

Determine and verify system properties such as linearity, causality, stability,
and memory.

Solve system differential equations using analytical techniques including zero-
input and zero-state responses.

Apply Fourier and Laplace transforms to analyze system behavior in time and
frequency domains.

Evaluate system response using impulse response, transfer functions, and

state-space representation.
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COURSE OUTLINE

Classification of signals, basic operation on signals,| 1(Q| CLOI
Elementary signals, representation of signals using impulse CLO2
function, Systems- classification

Linearity, causality of LTI, Time invariance, memory,| 1(| CLO2
Stability, invertibility, Stability - system representation

Order of the system, Solution techniques, Zero state and zero| 2(| CLO3
input response, Impulse response- convolution integral,
Determination of system properties, State variable- basic

concept, state equation and time domain solution, Fourier

series- properties

System response, frequency response of LTI systems, Fourier| 2(| CLOI
transformation- properties, System transfer function, CLO4

Properties of, Laplace transformation, Inverse transform,
solution of system equations, System stability and frequency
response and application
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COURSE SCHEDULE

Teaching-Learning

Assessment

Week|Topics T — S CLOs
Introductlop to Signals and Lecture + Visual Clas.s -
1 |Systems, Signal Examples Participation, |[CLOI1
Classification P Short Quiz
Basic Signal Operations Interactive Demo + Homework +
2 |(Time shifting, Scaling, Graphical . |CLOI
) : Spot Questions
Inversion) Assignments
: : i +
Elementary Slgngls. Step, Matlab Simulation + Assignment
3 Ramp, Exponential, Graoh Plottin Oral CLOl1
Sinusoidal P & Explanation
Impulse Representation, CLOl1
4 Dirac Delta and Sampling |Theory + Simulation Written Quiz |,
Functions CLO2
System Classification: : :
_|_
5 |Static/Dynamic, Group Discussion Class Test CLO2

Linear/Nonlinear

Venn Diagrams




COURSE SCHEDULE

Teaching-Learning

Assessment

Week Topics S e — CLOs
: : : : : Viva +
+
o L e Imarnc, Coe S0 i L0
Y Y P Solving
System Stability,
7  |Invertibility and Proble.m—Based Written Test  |CLO2
: Learning
Representations
Homework +
Order of System and Lecture + MATLAB :
8 System Equation Types Scripts Coding CLO3
y 1 P P Assignment
Solution Techniques:
9 |Homogeneous/Particular  |Solved Examples  |Quiz CLO3
Solutions
10 Zero Input & Zero State  |Interactive Problem Class Test CLO3

Response

Solving




COURSE SCHEDULE

Teaching-Learning

Assessment

Week Topics S e — CLOs
1 Impulse Response and Visualization + Problem Sheet CLO3
Convolution Integral Analytical Solutions [+ Viva
. 5 _|_
19 System Properties from MATLAB Analysis Assignment CLO3
Impulse Response Spot Test
State Variables and State Block Dl.a St Assignment +
13 Eauation Explanation + Vi CLO3
quations MATI AR va
: : - : n
14 Time .Domam State-Space Numerical Methods Ass.lgnment CLO3
Solution Quiz
: : R
15 Fourier Series and Derivation Written Quiz |CLO3

Properties

Simulation




COURSE SCHEDULE

Teaching-Learning

Assessment

Week Topics S e — CLOs
16 System Frequency Graphical and Class Test CLOI
Response, Bode Plots MATLAB CLOA4
: Analytical
17 Fourler.Transform and Derivation + Code  Mid-Term CLOA4
Properties
Demo
18 Laplace Transform: Problem Solving + |Spot Questions CLOA4
Properties and Inverse Demos + Assignment
: Lecture +
19 Transfer Functl.on and Axaiestiton Clas.s - CLOA4
System Analysis . Participation
Scenarios
Final Review: Stability, Coms Mgt | CLO1
20 |Frequency Response, Open Q&A Final Exam |,
Applications P CLO4




REFERENCE BOOK

Imun ( nunt

Linear Circuit Analysis:

Time Domain, Phasor, and

Laplace Transform
pproaches by Raymond A.

Fundamenta/d Fandamentals of Electric

Ei@@tr Circuits (7th Edition ) by

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV


https://youtube.com/playlist?list=PLgluYk4ut4L2RtIIyH42cVX6JZUUVHYzI&si=vx1s1InIIij7ywG6
https://youtube.com/playlist?list=PLgluYk4ut4L2RtIIyH42cVX6JZUUVHYzI&si=vx1s1InIIij7ywG6

Bloom Taxonomy Cognitive Domain Action Verbs

Remembering | Choose * Define ¢ Find * How ¢ Label ¢ List « Match * Name ¢ Omit * Recall * Relate *
(C1) Select « Show « Spell « Tell « What « When *« Where « Which « Who « Why
Understanding | Classify * Compare * Contrast * Demonstrate * Explain ¢ Extend ¢ Illustrate ¢ Infer °
(C2) Interpret « Outline * Relate « Rephrase « Show ¢ Summarize ¢ Translate
Applying (C3) Apply ¢ Build ¢ Choose Consjtruct * Develop * Experiment \.V.lth * [dentify ¢ Interview
» Make use of * Model * Organize * Plan * Select * Solve ¢ Utilize
Analyze ¢ Assume ¢ Categorize * Classify ¢ Compare ¢ Conclusion ¢ Contrast °
Analyzing (C4) | Discover * Dissect ¢ Distinguish ¢ Divide « Examine ¢ Function ¢ Inference ¢ Inspect °
List « Motive ¢ Relationships ¢« Simplify ¢ Survey ¢ Take part in * Test for « Theme
Agree ¢ Appraise * Assess * Award ¢ Choose * Compare * Conclude ¢ Criteria ¢
Evaluatin Criticize * Decide * Deduct ¢ Defend ¢ Determine ¢ Disprove ¢ Estimate ¢ Evaluate °
(C5) g Explain ¢ Importance ¢ Influence ¢ Interpret * Judge ¢ Justify ¢« Mark « Measure °
Opinion ¢ Perceive ¢ Prioritize * Prove * Rate * Recommend ¢ Rule on ¢ Select °
Support * Value
Adapt ¢ Build ¢ Change ¢ Choose ¢« Combine * Compile * Compose * Construct
Create ¢ Delete * Design * Develop ¢ Discuss * Elaborate ¢ Estimate ¢ Formulate °
Creating (C6) | Happen ¢ Imagine * Improve ¢ Invent * Make up * Maximize ¢ Minimize * Modify °

Original * Originate * Plan * Predict ¢« Propose ¢ Solution * Solve * Suppose ¢ Test °
Theory
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Different Types of Signals

EKG —
Microphone ——» — Oscilloscope
CD —— :
Switch Speaker
Oscillator ——» box
Audio
Pulse generator ——» Amplifier

AM/FM generator ——»

17
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* Type of Independent Variable

Time is often the independent variable. Example: the electri-
cal activity of the heart recorded with chest electrodes — the
electrocardiogram (ECG or EKG).

—

O
on

o

ECG amplitude {(mV)

o
o

6 8 10 12 14 16 18 20
Time (secs)

o
Nk
I



The term time is often used generically, to represent the inde-
pendent variable of a signal. the independent variable may be a

spatial variable such as in an image. Here grayscale information
is specified as a function of position.

Cervical MRI




Independent Variable Dimensionality

An independent variable can be 1-D (t in the EKG) or 2-D (Xx,y
in the image).

—

ECG amplitude (mV)

0 2 4 6 8 10 12 14 16 18 20
Time (secs)

6.003 examples are mostly 1-D, but many applications use mul-
tiple dimensions (radar, MRIs, numerical simulation).
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Continuous Time (CT) and Discrete-Time (DT)
Signals

CT signals take on real or complex values as a function of an
independent variable that ranges over the real nhumbers and are
denoted as z(t). DT signals take on real or complex values
as a function of an independent variable that ranges over the
integers and are denoted as z[n]. Note the use of parentheses
for CT signals and square brackets for DT signals.

o




An image example on the left, its DT representation on the right

The image on the left consists of 302 x 435 picture elements
(pixels) each of which is represented by a triplet of numbers
{R,G,B} that encode the color. Thus, the signal is represented
by c[n,m| where m and n are the independent variables that
specify pixel location and c is a color vector specified by a triplet
of hues {R,G,B} (red, green, and blue).
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Signals

a signal is a function of time, e.g.,

e f is the force on some mass
e U, IS the output voltage of some circuit

e p is the acoustic pressure at some point

notation:

o f, Vout, P Or f(+), Uout(:), p(-) refer to the whole signal or function

o f(1), Vout(1.2), p(t + 2) refer to the value of the signals at times ¢, 1.2,
and t + 2, respectively

for times we usually use symbols like ¢, 7, 14, . ..

Prepared by Noor Md Shahriar
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p(t) (Pa)
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-I I 1 1
§ .
||I |III|
| | [
| | | |
noo ||
| |
o | | A
| ] !
| | R
| | | |I I|
N I| || | R ~\
o/ [ | || LT
."I |I || | I| Y
v | | | | |
| | | [ |
| | | | ll |I
|| | '.|I
Il.-l | | v
||
[
| II“| 1
'11 0 1 2
t (msec)

Prepared by Noor Md Shahriar

24



Domain of a signal

domain of a signal: t's for which it is defined

some common domains:

e all, i.e., R

e nonnegative t: t > 0
(here t = 0 just means some starting time of interest)

e 7 insome interval: a <t <b
e t at uniformly sampled points: t = kh +1g, k=0, +£1,+2, ...

e discrete-time signals are defined for integer t, i.e., t =0, =1, £2,...
(here t means sample time or epoch, not real time in seconds)

we'll usually study signals defined on all reals, or for nonnegative reals

25
Prepared by Noor Md Shahriar



Dimension & units of a signal

dimension or type of a signal u, e.g.,

e real-valued or scalar signal: u(t) is a real number (scalar)
e vector signal: u(t) is a vector of some dimension

e binary signal: u(t) is either 0 or 1
we'll usually encounter scalar signals

example: a vector-valued signal

might give the voltage at three places on an antenna
physical units of a signal, e.g., V, mA, m/sec

sometimes the physical units are 1 (i.e., unitless) or unspecified
Prepared by Noor Md Shahriar
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Common signals with names

e a constant (or static or DC) signal: u(t) = a, where a is some constant

e the unit step signal (sometimes denoted 1(t) or U(t)),
u(t) =0fort <0, wu(t)=1fort >0
e the unit ramp signal,
u(t) =0fort <0, wu(t)=tfort >0
e a rectangular pulse signal,
u(t) =1fora <t <b, wu(t)=0 otherwise

e a sinusoidal signal:
u(t) = acos(wt + ¢)

a, b, w, ¢ are called signal parameters .
Prepared by Noor Md Shahriar



Real signals

most real signals, e.g.,

e AM radio signal

e FM radio signal

e cable TV signal

e audio signal

e NTSC video signal (National Television System Committee)
e 10BT ethernet signal

e telephone signal

aren't given by mathematical formulas, but they do have defining

characteristics
Prepared by Noor Md Shahriar



Measuring the size of a signal

size of a signal u is measured in many ways

for example, if u(t) is defined for t > O:

®

integral square (or total energy): f u(t)? dt
0
squareroot of total energy

integral-absolute value: f \u(t)| dt
0

peak or maximum absolute value of a signal: max;>¢ |u(?))

T —oo

- 1/2
root-mean-square (RMS) value: ( lim %f u(t)? dt)
0

1 (T
average-absolute (AA) value: T]il T \u(t)| dt
— 120 D

for some signals these measures can be infinite, or undefined

Prepared by Noor Md Shahriar
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example: for a sinusoid u(t) = acos(wt + ¢) for t > 0
e the peak is |al
e the RMS value is |a|/v/2 ~ 0.707|a|

e the AA value is |a|2/m ~ 0.636|a|

e the integral square and integral absolute values are oc

the deviation between two signals u# and v can be found as the size of the

difference, e.g., RMS(u — v)

Prepared by.NoorMd Shahriar
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Qualitative properties of signals

e u decays if u(t) — 0ast — o0

e u converges if u(t) — a as t — oo (a is some constant)
e 1 is bounded if its peak is finite

e w1 is unbounded or blows up if its peak is infinite

e u is periodic if for some T > 0, w(t +71') = u(t) holds for all ¢

in practice we are interested in more specific quantitative questions, e.g.,
e how fast does u decay or converge?
e how large is the peak of u?

31
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Bounded and Unbounded Signals

x(t) x(t)

Unbounded Unbounded

Bounded Bounded
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Periodic and A-periodic Signals

Periodic signals are such that z(¢+7T) = z(¢) for all t. The small-
est value of T that satisfies the definition is called the period.

Below on the left below is an aperiodic signal, with a periodic
signal shown on the right.

z(t) z(t)

\




Right- and Left-Sided Signhals

A right-sided signal is zero for t < T and a left-sided signal is
zero for t > T where T can be positive or negative.

A

T t T t
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Impulsive signals

(Dirac’s) delta function or impulse ¢ is an idealization of a signal that

e is very large neart = 0
e is very small away from ¢t =0

e has integral 1

for example:

e the exact shape of the function doesn’'t matter

e ¢ is small (which depends on context)
Prepared by Noor Md Shahriar
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on plots 0 is shown as a solid arrow:

() = 6(t)

f(t) =t + 1+ 5(t)

Prepared by.Noor.Md Shahriar
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Unit Impulse Function

The unit impulse §(¢), aka the Dirac delta function, is not a func-
tion in the ordinary sense. It is defined by the integral relation

| 1w = 5(0),

and is called a generalized function. The unit impulse is not
defined in terms of its values, but is defined by how it acts inside
an integral when multiplied by a smooth function f(¢). To see
that the area of the unit impulse is 1, choose f(t) = 1 in the
definition. We represent the unit impulse schematically as shown
below; the number next to the impulse is its area.

Unit impulse
6(t)
1




Formal properties

formally we define 6 by the property that

b
] F(8)8(t) dt = £(0)

provided a < 0, b > 0, and f is continuous at t = (

idea: 0 acts over a time interval very small, over which f(t) ~ f(0)
e )(t) =0fort#0

e 0(0) isn't really defined

b
-fé(t)dtzlifa.iﬂandbﬁﬂ

b
-/5(t)dt:0ifﬂ:}00rh{0
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Narrow Pulse Approximation

To obtain an intuitive feeling for the unit impulse, it is often
helpful to imagine a set of rectangular pulses where each pulse
has width ¢ and height 1/e so that its area is 1.

__PE(t)

The unit impulse is the quintessential tall and narrow pulse!



Uses of the Unit Impulse

The unit impulse is a valuable idealization and is used widely in
science and engineering. Impulses in time are useful idealizations.

e Impulse of current in time delivers a unit charge instanta-
neously to a network.

e Impulse of force in time delivers an instantaneous momentum
to a mechanical system.



Physical interpretation

impulse functions are used to model physical signals

e that act over short time intervals

e whose effect depends on integral of signal

example: hammer blow, or bat hitting ball, at t = 2

e force f acts on mass m between t = 1.999 sec and ¢t = 2.001 sec

2.001
. / f(t) dt = I (mechanical impulse, N - sec)
1.999

e blow induces change in velocity of

| 2001
v(2.001) — v(1.999) = —/ f(r)ydr =1/m
1

m Jq 099

for (most) applications we can model force as an impulse, at £ = 2, with
magnitude [
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example: rapid charging of capacitor

1vi@) v(t)i — — 1F

assuming v(0) = 0, what is v(t), i(t) for t > 07

e i(t) is very large, for a very short time
e a unit charge is transferred to the capacitor ‘almost instantaneously’

e v(t) increases to v(t) = 1 ‘almost instantaneously’

to calculate 7, v, we need a more detailed model

Prepared by Noor Md Shahriar



for example, include small resistance

i) =2 = =2 0(0) =0
R 1/R}
o(t) =1—e/F i(t) = e YR/R
R R

as It — 0, 7 approaches an impulse, v approaches a unit step
Prepared by Noor Md Shahriar



as another example, assume the current delivered by the source is limited:
if v(t) < 1, the source acts as a current source i(t) = Iyax

BREO
I'imax v(t)
_du(t) oy
i(t) = ks Inax, v(0) =0
| (1) N0
1/ Tinax 1/ Imax

as Imax — 00, i approaches an impulse, v approaches a unit step
Prepared by Noor Md Shahriar



in conclusion,

e large current i acts over very short time between t = 0 and ¢
£
e total charge transfer is / i(t) dt =1
0

e resulting change in v(t) is v(e) —v(0) =1

e can approximate i as impulse at t = 0 with magnitude 1

modeling current as impulse

e obscures details of current signal
e obscures details of voltage change during the rapid charging
e preserves total change in charge, voltage

e s reasonable model for time scales > ¢

Prepared by Noor Md Shahriar



Unit Step Function

Integration of the unit impulse yields the unit step function

u(t) = f_too o(7)dr,

which is defined as

[0 ift<O
’”’(t)_{ 1 ift>0.

Unit impulse Unit step

5(1) u(t)
1 1l

O
o
O
o~



Successive Integrations of the Unit
Impulse Function

Successive integration of the unit impulse vields a family of func-
tions.

Integration on t

>
Unit impulse  Unit step Unit ramp Unit parabola
t2 t'n,—l
o(t u(t tu(t —ault u(t
(®) () O O o e®
t t t t t

Prepared by.NoorMd Shahriar
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Building Block Signals can be used to
create a rich variety of Signals

z(t) = e P cos(wt)u(t)  z(t) = e cos(wt)u(—t)

t ~ \J |t

w(t) —u(t—1)  tu(t) =20t = Dult—1) 4+ (t—2)u(t— 2)

i/<

1 £ 1 2 £
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Conclusions

e We are awash in a sea of signals.

e Signhal categories — identity of independent variable, dimen-
sionality, CT or DT, real or complex, periodic or aperiodic,
causality, bounded, even & odd, etc.

e Building block signals — eternal complex exponentials and
singularity functions — are a rich class of signals and we will
show that they can be summed to represent virtually any
signal of physical interest.
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Outline - Systems

* How do we construct complex systems
— Using Hierarchy
— Composing simpler elements

e System Representations

— Physical, differential/difference Equations, etc.

* System Properties

— Causality, Linearity and Time-Invariance



Hierarchical Design
Robot Car

Robot car
Digital Target
. . camera
Side view = II

Side view Front view

Camera image

actual desired
S —

Top view | —TTT/——— 0

Error



Robot Car Block Diagram

Top Level of Abstraction

Desired
target
image Compute v(0,) Wheel
- desired g position
wheel angle controller
Actual
target
image Digital
: -

Cdmerd




Wheel Position Controller Block Diagram

2"d Level of the Hierarchy

(0 Electronic 1 Motor
i._ driver ™ dynamics
A amplifier :
v(6) Shaft

decoder -




Motor Dynamics Differential Equations

3"d Level of the Hierarchy

e Motor Current i(t),
e Angular Displacement, 8(t),

e Constants: Friction, B, Moment of Inertia J, torque conver-
sion k.

T he torque balance differential equation:

do(t d20(t

wy P _ g)
dt di

electric origin friction inertia




Observations

e If we “flatten” the hierarchy, the
system becomes very complex

* Human designed systems are often
created hierarchically.

* Block input/output relations provide
commuhnication mechanisms for team

projects



Compositional Design

Mechanics - Sum Element Forces

—v(t)

e M = mass, v(t) = veloc-
ity

— f(t) e B = friction, K = spring

e f(t) = external force.

B

Summing forces yields

du(t t
o= MPD L Bu —|—K/ (1) dr .
dt ——— = )
inertial force  friction force spring force

Prepared by.NoorMd Shahriar
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Circuit - Sum Element Currents

ic®] ww®] w®| |

i(t)K) C=— R Lgv(t)

Summing currents yields

N du(t) v(t) 1 ft
W= == + i +jf_mv(T)di.

capacitance resistance inductance



System Representation

Differential Equation representation

— Mechanical and Electrical Systems Dynamically
Analogous

B dv(t) | t
FO = MTZ + Bu®) + K f o(r)dr,
N d’U(t) ’U(t)
it) = 0% = f o(r) dr.

— Can reason about the system using either
physical representation.



Integrator-Adder-Gain Block Diagram

F(t) = Md—() + Bu(t) + Kf o(r)dr.

dv(t) |

10, w’ TNy IO




Four Representations for the same
dynamic behavior

dult) l

It) i v ()
({13 J .

] m®)] awm] | \ |
() Ji(t)IC) c= Rg Lg'v(t) B |

fjm v(r)dr

dv (t)

F(t) = + Bu(b) +K/ () dr.

Pick the representation that makes
it easiest to solve the problem

Prepared by.NoorMd Shahriar
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Discrete-Time Example - Blurred Mandril

Af,;f

= Blurre

Orlglnal pe 2

Image

«{j i% Deblurred
! f’/‘P Image




Difference Equation Representation

* Difference Equation Representation of the
model of a Blurring System

yln] + a1y[n — 1] + asy|n — 2] + agy[n — 3| = z[n|
* Deblurring System
z[n] = boy(n| + biy[n — 1| + bayn — 2] + bzy|n — 3]

How do we get z|n| ~ x|n|



* The difference equation is a formula for computing an output sample
at time based on past and present input samples and past output
samples in the time domain’

y(n) = bpzxn)+bhoin -1+ +byxin— M)

—aryln—1) —+++ —ayyln — N)
M
= E 3 — 4' E (1 3 — ',l
i—() 4=1
where 1 is the input signal, 1 is the output signal, and the constants b;, 7 = 0, 1, 2 My a i =1,2,..., N are called the coefficients

As a specific example, the difference equation

yin)=001z(n)+0.002z(n—1)+0.99y(n—1)

specifies a digital filtering operation, and the coefficient sets [ﬂp.ﬂl_. (.0 ] ( % ﬁF}llg.,r characterize the filter. In this example, we have M = N =1
repared by Noor'M ahria



Observations

CT System representations include circuit and
mechanical analogies, differential equations,
and Integrator-Adder-Gain block diagram.

Discrete-Time Systems can be represented by
difference equations.

The Difference Equation representation does
not help us design the mandril deblurring

New representations and tools for manipulating
are needed!
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System Properties

Important practical/physical implications

Help us select appropriate
representations

They provide us with insight and
structure that we can exploit both to
analyze and understand systems more

deeply.



Causal and Non-causal Systems

For a causal system the output at time ¢, depends only on the
input for t < t,, i.e., the system cannot anticipate the input.

ﬂ-— System y—(t)-—
Non causal Causal
z(t) z(t)
) y(t)
AN
t t
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Observations on Causality

A system is causal if the output does not anticipate future
values of the input, i.e., if the output at any time depends
only on values of the input up to that time.

All real-time physical systems are causal, because time only
moves forward. Effect occurs after cause. (Imagine if you
owh a noncausal system whose output depends on
tomorrow’ s stock price.)

Causality does not apply to spatially varying signals. (We can
move both left and right, up and down.)

Causality does not apply to systems processing recorded
signals, e.g. taped sports games vs. live broadcast.




Linearity

z1(t) Linear y1(t)
System

z2(t) Linear yo (1)
System

axy(t)+bxro(t) Linear ay1()+bya(t)
System

for all z1(t), z>(t), a, and b.



Key Property of Linear Systems

e Superposition

' Y agweln] — > arykn)
k



Linearity and Causality

e Alinear system is causal if and only if it satisfies the
conditions of initial rest:

x(t) =0 for t <tg — y(t) =0 for t <ty (*).



Time-lnvariance

Mathematically (in DT): A system x[n] — y[n] is Tl if for
any input x[n] and any time shift n,,

If x[n] = y[n]
then x[n -ny]l = yln-ngl.

Similarly for CT time-invariant system,

If x(t) — y(t)
then x(t-t) > y(t-t,).



Interesting Observation

Fact: If the input to a Tl System is periodic, then the output is periodic with the same
period.

“Proof”: Suppose x(t+ T) = x(t)
and x(t) — y(t)
Then by TI
xX(t+T) > y(t+T).
T T

These are the So these must be
the same output,

same input! i.e., y(t) = y(t + 7).



Example - Multiplier

z(t) C y(t) = g(©)z(i)

Tg(t)

e Is this system linear?

e Is this system time-invariant?

Prepared by.Noor Md Shahriar
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Multiplier Linearity

et
y1(t) = g(t)z1(t) and yo(t) = g(t)z2(?).

By definition the response to

z(t) = az1(t) + bxo(l),

y(t) = g(t)(az1(t) + bza(t)).

This can be rewritten as

y(t) = ag(t)z1(t) + bg(t)zo(t)
y(t) = ay(t) + byo(t).

T herefore, the system is linear.



Multiplier — Time Varying

Now suppose that z1(¢) = z=(¢) and z-(t) = z(t — 7), and the
response to these two inputs are y1(¢) and y»(t), respectively.
Note that

y1(t) = y(t) = g(t)z(t),
and
yo(t) = g(t)z(t —7) = y(t — 7).

T herefore, the system is time-varying.



Example — Constant Addition

Suppose the relation between the output y(¢t) and input z(¢) is
given y(t) = z(t) + K, where K is some constant. Is this system
linear?

Solution — Addition of a constant

Note, that if the input is z1(¢) 4+ z>(t) then the output will be

y(t) = z1()Fzo(t)+ K # y1(t)Fy2(t) = (z1()+K)+(z2(t)+K).

T herefore, this system is not linear.

In general, it can be shown that for a linear system if z(f) = 0
then y(¢) = 0. Using the definition of linearity, choose a = b =1
and z» = —z1(t) then z(t) = z1(t) + z-(t) = 0 and y(t) =
y1(t) + yo(t) = 0.



Two-minute miniquiz problem

Problem 2-1
Consider the robot arm:

rotent i ometer ﬂ arm mo Lo

=3

e How will you model the system?

e How would you control the position?

29-1



Linear Time-Invariant (LTl) Systems

Focus of most of this course
- Practical importance

- The powerful analysis tools associated
with LTI systems

A basic fact: If we know the response of an LTI system to
some inputs, we actually know the response to many inputs



Example — DT LTI System

z1[n] y1[n]
2 ;
_llhl__ T
—101 01
zo[n] (! 2z1[n — 1] z1[n — 2]
4
: 2 2 2
2
| . = | ‘ - ' | !
01 21_1 012 123
\J 1
y2[n] 2y1[n — 1] y1[n — 2]
2 2
EE = || - sl
12 1_1 12 23
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Conclusions

Systems are typically described by an arrangement of subsys-
tems each of which is defined by a functional relation.

Many different physical systems are defined by the same
mathematical model so that understanding one system leads
to an understanding of others.

Systems are classified according to such properties as: mem-
ory, causality, stability, linearity, and time-invariance.

Linear, time-invariant systems are special systems for which
a rich and powerful description is available. We will focus on
such systems.
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Today: Modeling Channel Behavior

Sample clock, samples/symbol 2N possible

e bits to
Message bits in —»‘ digitized sample T) DAC

voltages

{: channel

)4_

Clock and
data recovery

—@ ﬁL){ Threshold ——
N

—>Message bits out

Sample clock, samples/symbol

Prepared by.NoorMd Shahriar
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System Input and Response

input response
N SV
Xn— § +——yn]

A discrete-time signal is described by an infinite sequence
of values, denoted by x[n]|, y[n], z[n], and so on. The indices
fall in the range —« to +w,

In the diagram above, the sequence of output values y[n] is
called the response of system S to the input sequence x[n].

Prepared by.Noor Md Shahriar
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Unit Step and Unit Step Response

A simple but useful discrete-time signal is the wnit step, u[n],

defined as
Unit step Unit step re?ﬁ-nse
(] 0, n<0 AN
Hin|=
ujn —s S|I1
L n=0 [ ]—>{ S [n]
u[n] uln—3
1.0 L B RN N R R R R 1.0 [ I B RN R R
0.8 0.8
06 0.6
0.4 0.4
0L 0.4
R B N I O R N Diie & % & 8 & 5 5 & # B
=5 0 5 =5 4] 5
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Unit Sample

Another simple but useful discrete-time signal is the unit
sample, d[n], defined as

S(nl=un]-un-11=1 & =0
I, n=0

d[n] 8[n + 5
1.0 ! ‘l : 1.0 ; :
0.8 0.8
0.6 Al
0.4 0.4
0.2 0.2
0% & &% & & & 8B & - & 8 & & & & & & DOje e e s s s sesssssssss

-5 ) 5 -5 0 5
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Unit Sample Response

Unit sample Unit sample response
VAN

SV
5n] _,.E_, hin]

The unit sample response of a system S is the response of
the system to the unit sample input. We will always
denote the unit sample response as hn].

Prepared by.NoorMd Shahriar
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=4 -1-
SiaSunS

-1

I TE
[
1
I |
[ ]
1 7 1 F]
x[—2)d[n+2
- - E 3 -
1 0 1 2
r| 1 dn 1|
- L -
[ ]
1 i 1
.r|[l il n|
§ A i i
[ ] L] [ ]
i i ]
x|1|d{n—1|
L] L] T L ]
1 b 1 F]
.r'|'_J' ."J:rj ‘_J'|
- - -

Ly

Unit-sample
Decomposition

A discrete-time signal can be decomposed
into a sum of time-shifted, scaled unit
samples.

Example: in the figure, x[n] is the sum of
x[-2]0[n+2] + x[-1]8[n+1] + ... + x[2]8[n-2].

In general:

x[n]= i x|kloln-k]
f=—20 \_/\

For any particular index, only
one term of this sum is non-zero

90
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x|n|

sl 11T, coeea s JIHTTTIITE .

o 5 10 15 20 23
uln|

Hiididittiitaiadtntnsaitanangd

] a2 1K 1 il Fs
u|n—12|
10F 1 ! "N . .
T
e & & & s &88888 . 4 i L
=05
=10k i i i i i
0 5 16} 15 Fii) &5
u[rn—24|
1.0 I
0.5
NN E F SR EEE SN EEE RS R RN NS N E NN ] i ¥
—0.5 l 11
=110 i L i L L
o 5 10 15 i) 5

Unit-step
Decomposition

Digital signaling waveforms are
easily decomposed into time-
shifted, scaled unit steps (each
transition corresponds to another
shifted, scaled unit step).

In this example, x[n]| is the
transmission of 1001110 using 4
samples /bit:
xin]l=uln]-un-4)+un-12]-uln-24]

Prepared by.NoorMd Shahriar
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Time Invariant Systems

Let y[n] be the response of S to input x[n].

If for all possible sequences x[n] and integers N

x[n-N] _,E_} y[n-N]

then system S is said to be time invariant. A time shift
in the input sequence to S results in an identical time
shift of the output sequence.
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Linear Systems

Let y,[n] be the response of S to input x,[n] and y,[n] be
the response to x,[n].

If

ax,[n]+ bx,[n] —r} ay,[n]+by,[n]

then system S is said to be linear. If the input is the
weighted sum of several signals, the response is the
superposition (i.e., weighted sum) of the response to
those signals.

Prepared by.Noor Md Shahriar
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Modeling LTI

Systems

If system S is both linear and time-invariant (LTI), then we can
use the unit sample response to predict the response to any

input waveform x[n|:

Sum of shifted, scaled unit samples
'H.H i'\'\\_
o ~

Sum of shifted, scaled responses
‘.“-1‘.-"-\.1‘-\.
o L]

x[n]= Y x[kloln-kl— S

ke e

—)nl="Y xlklhln-k]

e ]

Indeed, the unit sample response h[n] completely characterizes

the LTI system S, so you often see

X[n]—s hy[n]

— y[n]

94
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Properties of Convolution

=)

x[n]*h[n]= E x[k1h[n-k]

K=—rE

The summation is called the convolution sum, or more simply,
the convolution of x[n] and h[n]. “¥” is the convolution operator.

Convolution is commutative:

x[n]*h[n]=h[n]*x[n]

Convolution is associative:

x[n]*(h[n]*hy[n])=(x[n]*h[n])*h,[n]

Convolution is distributive:

x[n]*(h[n]+hy[n]) = x[n]* h[n]+ x[n] = h,[n]

Prepared by.Noor Md Shahriar
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Parallel Interconnection of LTI Systems

¥y (0]

> hy[n]
x(n] — _”L

(Y S— }'[1"1]

— hy[n] j

yaln]

ylnl=y,[nl+ y,[n] = x[n]*h[n]+x[n]* h,[n] = x[n]*(h[n] + h,[n])

X[n] —»{ h,[n]+h,[n] — ¥[n]

Prepared by.Noor Md Shahriar
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Series Interconnection of LTI Systems

win]

X[n]—s h,[n] h,[n] > yln]

y[n]=w(n]* h,[n] = (x[n]*h[n])*h,[n] = x[n]* (h [n]* h,[n])

X[n]—  h, [n]*h,[n]

— y[n]

> y|n]

X[n]—  h,[n]*h,[n]

(] —s hyfn] [— by[n]

— y[n]

Prepared by.NoorMd Shahriar
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Channels as LTI Systems

Many transmission channels can be effectively modeled as
LTI systems. When modeling transmissions, there are few
simplifications we can make:

« We'll call the time transmissions start t=0; the signal before
the start is 0. So x[m] =0 for m < 0.

« Real-word channels are causal: the output at any time
depends on values of the input at only the present and
past times. So h[m] =0 for m < 0.

These two observations allow us to rework the convolution
sum when it's used to describe transmission channels:

y[n]=2x[fc]h[n k)= Ex[k]h[n k]= }:x[fc]h[n k]= Ex[n N

F— A k=D Y k=0 L~ j=0
| "'; I "
| s

start at t=0 causal j=n- L;

98
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Relationship between h[n] and s[n]

We're often given one of h[n] or s[n] and would like to
know the other. On slide #5 we saw

o[n]=uln]-u[n-1]

Which for LTI systems implies
hin]=sln]-s[n-1]

In other words, the unit sample response is the first
difference of the unit step response. Also

stnl =S Alk)

Prepared by.Noor Md Shahriar
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k|

o |

0

oj

s[n]=u[n]*h[n]

.|'|| i i |ri| mby, |m
- L L ] L 3 L 3 L L ] 1
i
2k
ns
¥
- - - L L] - - - -
i & o ] [ [
falm vk (e | i [
F '
" .
' .
. .
i *
* ] ] ® # &
1 - -
] 1 1 ] 7 ] F t []
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h[n]

hy n]

s[n]=u[n]*h[n]

uln] < g )

IIIIIII

7

uln|=h|n|

o4
[ 3 I
[ 1.} T
[1] 2

lllll
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14

1]

L]

0.5

h[n]

b |n

! -—

4

s[n]=u[n]*h[n]

H'l” #’J:l "l
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Transmission Over a Channel

r[n| at 8 samples/bit

1.0 essssss

osf
06F
o.af
0z

0.0 Sttty

yln| =x[n| xh; [n

hr._.ﬂwll Lk

1 1 1
30 40 70
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Receiving the Response

i) aln] *hyn

I
1 I
I 1 ]
U 1 1
v L} -1 | £ 1 L)
1 Srmeeeitresenefel R O T,
i 1 i I ;P . J
1 1
' e 2
1
i
1

9 oiiellllet e
_______________ wl|| o wlllllet i ellll
o || T ﬁ“““T"' A1 111
| I i 1 1 1 1 I
120 ¢ 30 i 40! 50 60 170
Digitization threshold = 0.5V
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Faster Transmission

x[n| at 4 samples/bit

1.0 ewe
o8}
0bFR
04f
0.2}

0.0

30

y[n] = :L[ﬂl xhy [nl

30 a0 50 60 70

£

S .

\ !

20

30 \/'\\4'0 50 60 70
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Amazing Property of LTI Systems

We will show that for a DT system

O

ylnl= . z[mlh[n—m],

Mm=—0
where z[n] is an arbitrary input, k[n] is the unit sample response,

y[n] is the output, and the above relation is called the superpo-
sition sum.

We will show that for a CT system
o0
v = [ a(Dh(t—r)dr,
o0

where z(t) is an arbitrary input, h(t) is the unit impulse response,
y(t) is the output, and the above relation is called the superpo-
sition integral.



Outline

e Superposition Sum for DT Systems
— Representing Inputs as sums of unit samples
— Using the Unit Sample Response

e Superposition Integral for CT System
— Use limit of tall narrow pulse

* Unit Sample/Impulse Response and
Systems

— Causality, Memory, Stability



Representing DT Signals with Sums of Unit Samples

_— z[2]
z[0] x[n]
1 ‘ [ 1 ‘ r |
—1 0 } 2 3 n
z[1]
[
e 2[0)5[n
+ n
x[1]6[n — 1]
l z[1] "
_|_
lw[l} z[—1]8[n + 1]
—1 n
_|_
xz[2]
{ 2[2]5[n — 2]



Written Analytically

z[n] = -+ 2[—2)6[n + 2] + z[-1)d[n + 1] + 2[0]d[n] + z[1]6[n — 1] + - --

4

o0

Coefficients Basic Signals

Note the Sifting Property of the Unit Sample

110
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The Superposition Sum for DT Systems

Graphic View of Superposition'Sum

z[n]

$

Definition —_— -

DTLTI

— 00T 80000
Ti

Shift invariance ‘ —

DT LTI

T
Scaling ] —

DTLTI

Ti
Superposition ¢7e] ‘1 r —»
Ti

DTLTI




Derivation of Superposition Sum

Definition

Shift invariance

Scaling

y[n]

§[n]—| DT LTI

—— h[n]

§[n — m]— DT LTI

—— h[n — m]

z[m]é[n—m]—— DT LTI

- » z[m]h[n—m]

Superposition ) " z[m]é[n—m]— DT LTI

m

—PZm[m]h[n—m]
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Convolution Sum

The relation

z[n] = Za:[m](S[n — m]

m

expresses the sifting property of the unit sample. Note that
the only non-zero term in this sum occurs when m = n, hence
demonstrating the validity of the equation. T he major conclusion
of the derivation is that for an arbitrary input z[n], the output is

yln] =) z[m]k[n —m]

m
which is called the superposition sum. Such a relation is called
a convolution sum when it involves arbitrary functions, i.e.,

zln] =) _zi[mlzaln — m].

T hus, the superposition sum is a special case of the convolution
sum.



Convolution Notation

We shall write the convolution sum of two DT signals as
z|n] = z1[n] * zo[n] = ;ml[m]:cz[n —m].
T he symbol for convolution in various textbooks includes
z1[n] * z2[n|, z1[n] * z2[n], and z1|n] @ z2[n|.
Notation is confusing, should not have [n]
takes two sequences and produces a third sequence

Z — X1 * I9nakes more sense
Learn to live with it.



Convolution Computation Mechanics

ylnl = z[n] * h[n] =} _z[m]h[n —m],

m
Step 1 Plot £z and h vs m since the convolution sum is on m.
Step 2 Flip h[m]| around the vertical axis to obtain A[—m].
Step 3 Shift h[—m] by n to obtain h[n — m].
Step 4 Multiply to obtain z[m]h[n — m].
Step 5 Sum on m to compute >, z[m]h[n — m].
Step 6 Index n and repeat Steps 3-6.



DT Convolution Properties
Commutative Property

z[n]

Proof:

z[n] * h[n] = h[n] * z|n]

hn]

y[n] _ hn]

z[n]

yln] = z[n] * h[n] =) z[m]h[n — m].

Let n —m =1 then

y[n] = z[n] + hln] =}

l

H]

z[n —Ik[l] = Z hlllx[n — I] = h[n] * z[n].
[



Associative Property

y[n] = (z[n] * hi[n]) « ho[n] = z[n] * (h1ln] * ho[n])

il hiln] ™ haoln] vl _ =l h1[n] * ho[n] EiLe

Proof:

yln] = (Zm[mlhl[z - ml) haln—1] = " zfm] (Z hall — mlhafn - l]) .
{

{ m m

Let Kk =1 — m to obtain
y[n] =) z[m] (Z hilklholn —m — k]) =) _z[m]h[n —m],
m k m
where
hln] = hi[n] * ho[n].



Distributive Property

ylnl = zln] * (h1[n] + ho[n]) = z[n] * h1[n] + z[n] * ho[n]

—* hiln]
2 bl + o) 2 =211 E}M

holn] |

Proof:
z[m](h1[r —m] + ho[n —m])

- >
= Y z[m]hi[n —m] + > z[m]hs[n — m]

y[n]



Delay Accumulation

If
yln] = z[n] * hn]
then
z|n — 3] * hln — k] = y[n — k — 4]
ol ol
Mh[n_k] yln—k—J]
Proof:

Y zlm—jlhln—k—m] =) z[llhln—k—-j—1] =y[ln—k—j].

m )
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Superposition Integral for CT Systems
Graphic View of Staircase Approximation

z(t) y(t)
Definition H — CTLTlI —
Time invariance H —» CTLTI
Scaling ‘| — CT LTI

Superposition r_‘-ﬂ‘H—l_h — CT LTI




Tall Narrow Pulse

To represent a continuous time function with a staircase approx-
imation, it is useful to define a tall and narrow pulse.

. on(t)

A

A

As A is decreased, the width of the pulse decreases and the
amplitude increases while the area remains 1.



Derivation of Staircase Approximation of
Superposition Integral

y(t)

CTLTI

— h&(t)

CTLTI

L hA(t—kA)

z(t)
Definition SA(t) —»
Time invariance Sa(t—kA)—»
Scaling (kDAY A(t —kA) —»

CTLTI

S OYNTINCE TS

Superposition » " z(kA)SA(t—kA) A —»

CTLTI

—— > z(kA)RA(t—kA) A

k
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The Superposition Integral

T he derivation shows that a staircase approximation to the input
z(t)
zA(t) = Zx(k&)éA(t —kAY A
k
yields a staircase approximation to the output

ya(t) =3 z(kA)ha(t — kA) A
k

Now we take the limit as A — 0, k — o0, kA =7, zA(t) — z(1),
ha(t—kA) — h(t—7), and A (t—kA) — 6(t—7) in a generalized
function sense. Then the sums approach the integrals

2(t) = / = 28t — 1) dr,

— 00

u(t) = f = Bkt — ) dr.

— 00



Sifting Property of Unit Impulse

We examine the sifting property of the unit impulse which is
inherent in the expression
o0
() = / £(7)6(t — 1) dr.
— 00
To see what this means we approximate the impulse with a tall,
narrow pulse.

14
Alldalt—7) m(t)‘%‘
N A
/ { o
]
t T t T
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CT Convolution Mechanics

To compute the superposition integral
DO
() = z(£) * h(t) :f z(P)h(t — 7) dr,
— XD
Step 1 Plot z and h vs 7 since the convolution integral is on 7.
Step 2 Flip A(7) around the vertical axis to obtain A(—7).
Step 3 Shift A(7) by t to obtain A(t — 7).
Step 4 Multiply to obtain z(r)h(t — 7).
Step 5 Integrate on 7 to compute [*0 z(7)h(f — 7)dr.
Step 6 Increase ¢t and repeat Steps 3-6.



CT Convolution Properties

Commutative y(t) = z(t) * h(t) = h(t) * z(t)
Associative y(t) = (x(t) * h1 (1)) * ho(t)

y(t) = z(t) * (h1(t) * ho(t))
Distributive y(t) = z(t) * (h1(t) + ho(1))

y(t) = z(t) * h1(t) + z(t) * ho(¢)
Delay accumulation y(t—m — 1) =z(t —7m1) * h(t — ™)

Derivative accumulation y"tml (t) = zlnl (1) * plm] (t)
The last property implies that differentiating the input n times

and the impulse response m times results in an output that is
differentiated n 4+ m times.



Computing Unit Sample/Impulse Responses
Circuit Example

The unit sample/impulse response of an LTI system character-
izes that system. How can we measure this response on a real
system? To indicate how this might be done we will determine
the impulse response of a CT LTI system that is a lowpass filter.

A4 +

+
v; (%) C = vo(t)

To find the impulse response we will determine the response to
a tall, narrow pulse.



Narrow pulse approach

Determine v,(t) in response to the pulse of input shown.

L Vi)

+
v;(t)

Prepared by.Noor Md Shahriar
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Narrow pulse response

Note that v;(¢¥) can be written as the difference of a step and a
step delayed that is scaled as follows

o) = (u(®) — ult — &),

T herefore, we need only find the response of the network to a
unit step v;(t) = u(t). We denote the step response as vo(t) =
s(t) which is

s(t) = (1 — e *)u(t),

where a = 1/(RC'). Therefore, the response to the pulse is

vo(t) = /i (1 —eu(t) — (1 — e D)u(t - A))



Narrow pulse response

V4
cont d
_|_
A v; (1) O =—| vo(t)
A t B

T he pulse response can be written as

4

0 fort <O
vo(t) = A(1—e ) for0<t< A

AR — 1) for t > A

131
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Convergence of Narrow pulse
response

0 for t <0

¥
At forO<t<A

ae”® for t > A

Hence, the impulse response of the LPF is

h(t) = ae ul(t).

132
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Alternative Approach — Use
Differentiation

u(t) —»

h(t) = ae “u(t)

— (L—e “u(®)

du(t)

5(t) — dt -

h(t) = ae” u(t)

d —
-~ (1—e"*u(?)

To determine the impulse response, we need to evaluate the
derivative which we do by parts

h(t) = % ((1 - e_at)u(t)) — ae ®u(t) 4+ (1 — e Ds(0).



Alternative Approach — Use
Differentiation cont’ d

To simplify the impulse response we need to interpret the term
(1 — e~ 2)§(t) which we do by placing that term in an integral
and noting that

/:(1 —ed(tdt = (1-e )| _ =0,

T herefore, the second term is an impulse of area O which equals
0, so that the impulse response is

h(t) = ae™ “u(t).

T his agrees with the result obtained by finding the response to
a tall, narrow pulse.



How to measure Impulse Responses

Apply a brief rectangular pulse and measure the response. Re-
peat the measurement with a pulse of briefer duration but the
same area.

Response of the LPF to pulses of
different durations.

Repeat the process with briefer pulses until the changes in the
pulse responses do not matter to you. T he pulse response to the
briefest of these pulses is an estimate of the impulse response.



Unit Sample/Impulse Responses of
Different Classes of Systems

Memoryless hn] = §[n] ‘ h(t) = &8(t) ‘

0

Causal h[n] =0 for n < O Jnnﬂﬂﬂ h(t) =0 fort <O b

0
BIBO stable ¥ |h[n]| < co m‘m /OO h(t)dt%
0 i

0 k1)

The condition for the unit impulse/sample response for a BIBO
stable system requires some justification.
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Bounded-Input Bounded-Output Stability

y[n] can be expressed in terms of the input z[n] as

ylnl = 3 hlmlz[n —m]

m——0oo
For a BIBO stable system, if z[n] < oo then y[n] < co. Therefore,

o0

< >, |hm]llzln—m]| < zmea Y |h[m]],

mMm—=—00 m—=—o0o0

> hlm]z[n —m]

m——00

where zmqz is the maximum value of |z[m]|. Therefore, if Tmaez <

oo, and if
OO

> |hlm]| < oo,

m—=—00

then y[n] < oo. This condition is both necessary and sufficient.



Conclusions

Time functions can be represented as superpositions of unit
samples/impulses,

z[n] = z[m]d[n —m] and z(t) = /O:o z(7)o(t — 7) dr.

m —

The unit sample response of an LTI DT system h[n]| and the
unit impulse response of an LTI CT system h(t) characterize
those systems.

T he superposition sum and integral allow a computation of
the output for an arbitrary input given only the unit sam-
ple/impulse response,

y[n] =) z[m]h[n —m] and y(t) = /0:0 z(T)h(t — 7)dr.

T
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Fourier Series & The Fourier Transform

What is the Fourier Transform?
Anharmonic Waves

Fourier Cosine Series for even
functions

Fourier Sine Series for odd functions

The continuous limit: the Fourier
transform (and its inverse)

Some transform examples

o0

f(t) = ZLJF(a)) exp(iot)do F(w) = J-f(t) exp(—iwt) dt
T

—00



What do we hope to achieve with the Fourier
Transform?
We desire a measure of the frequencies present in a wave. This will

lead to a definition of the term, the spectrum.

Plane waves have only
one frequency, ®. —>»

Light electric field

Time

This light wave has many
<« frequencies. And the

frequency increases in

time (from red to blue).

Light electric field

Time

It will be nice if our measure also tells us when each frequency occurs,



Lord Kelvin on Fourier’ s theorem

Fourier’ s theorem is not
only one of the most
beautiful results of
modern analysis, but it
may be said to furnish an
Indispensable instrument
in the treatment of nearly
every recondite question
iIn modern physics.

Lord Kelvin
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Joseph Fourier

Fourier was obsessed
with the physics of heat
and developed the
Fourier series and
transform to model
heat-flow problem:s.

Joseph Fourier 1768 - 1830
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Consider the sum of two sine waves (i.e., harmonic
waves) of different frequencies:

e H Y
/ \\ Sine wave #2 // \ Sum

The resulting wave is periodic, but not harmonic.
Essentially all waves are anharmonic.



Introduction to Fourier Series

i a, + a, cos(x)

f(x)

..ta, cos(2x)

| ..t a, cos(3x)

H ..+a, cos(nx)+...




Fourier series

* A Fourier series Is a convenient
representation of a periodic
function.

A Fourier series consists of a
sum of sines and cosine terms.

 Sines and cosines are the most
fundamental periodic functions.



Fourier series

e The formula for a Fourier series
IS:

f(x)=a,+ ’g(an cos( 2};”7“} +b, sin( 2};7“ D




Fourier series

 \We have formulae for the

coefficients (for the derivations
see the course notes):

S

o

[l
N =

NT‘%Q—'N‘H

~

.

[

=

S

II
NN
ey | N

2n7x
f(x)cos( 7 ja’

S
I

N o
N{ﬂ'—'w‘ﬂ N\“]
~
~~
&
-
2y
=
e PRI
&)
3
IS
=



Fourier series - Orthogonality

* One very important property of sines and

cosines is their orthogonallty, expressed
by:

2 (2n7zxj . (2m7zxj
Js sin dx =<
h T
)
)
2 2nmx 2mx
Icos COS dx =<
y/ T r
¥

2

cos( 2nmjsin( 2mﬂxjdx =0 forallm,n
T T
P

These formulae are used in the derivation of the
formulae for a b

(0 nzm

o N

—

T



Example — Fourier series

« Example — Find the coefficients
for the Fourier series of:

—x —7<x<0

fuj:{x 0<x<r
S(x+27) = f(x)




Example — Fourier series
* FInd g,

1 ¢ 1 7
4= [ f@dr =a, 25 L f(x)dx

L
2

f(x) is an even function so:

a, :ij‘if(x)dx = a, =%Tf(x)dx

0

1 I{XZT T
:aoz—jxdx:aoz__ = a, = —
T % 7| 2§ 2



Example — Fourier series

* Find q,

ey [

»
YT

f(x) cos( 2’;fzxjdx =a, = %]i f(x) cos( 2;:6 )dx

ww

Since both functions are even their product is
even:

Vi

o ][‘ f(x)cos(nx)dx = a, = %Ixcos(nx)dx
4 -7

L



Example — Fourier series

 Find b,

b, = % jf (x) sm( 2”’“jdx —b = %j £(x) sin( 2;f)dx

_3
2

Since sine is an odd function and f (x) is an even
function, the product of the functions is odd:

LY Tf(x) sin(nx)dx = b, =0
44 —7



Example — Fourier series

* SO0 we can put the coefficients
back into the Fourier series
formula:

= 2N . [ 2nmx
f(x)=a,+ ;(an cos( Ei )+ b, sm( - D
= /(9= 24 z[mi 1y = 1)cos(nx)j

= f(x) :%—%cos(x)+0—%cos(3x)+...



Easy ways of finding Fourier
coefficients

* There are some easy shortcuts for
finding the Fourier coefficients.

 \We can see that:

=% TT f(x)dx

is just the area under the fundamental
range divided by the period.



Summary of finding coefficients

function
even

function
odd

function
neither

aoz%if(x)dxzo

Though maybe easy to find
using geometr y

0

F
a = [ f()dx=0
_r

Though maybe easy to find
using geometr y

2nmx
=—Lﬂ) ( ;

o

=_jf( )co [2ijdx

2nmx

b == jf(x) m(

b ——_[f( )si (ZT’“jdx
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Partial Sums

* The Fourier series gives the
exact value of the function.

« However, it uses an infinite
number of terms, so is
Impossible to calculate.

* \We can evaluate the partial
sums of a Fourier series by only
evaluating a set number of the
terms.



Partial Sums

* For partial sums we use the
notation:

n=N
Sy (x) =rrgf Z (an cos( 2’;5“) +b, sin( 27;“ D

n=1

To represent a partial sum with NV terms.



Example 1 — Partial Sums

« Compare the plots of the partial

th the original function:;
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Example 1 — Partial Sums

« Compare the plots of the partial
sums with the original function:

|||||||||||||||
77777777777777777777777777777777



Example 1 — Partial Sums

« Compare the plots of the partial
sums with the oriainal function:

777777
5 a 3 0 2 T & ¥ a4 =2 u 2z a1 =

uuuuuuuuuuuuuuuu
————————————————————



The Fourier Transform

Consider the Fourier coefficients. Let’ s define a function F(m) that
incorporates both cosine and sine series coefficients, with the sine
series distinguished by making it the imaginary component:

Fim) = F,— iF = I f(t)cos(mt)dt — i I £(¢) sin(mt) dt

Let’ s now allow £{¢) to range from —x to oo, so we’ Il have to integrate
from —o to o0, and let’ s redefine m to be the “frequency,” which we’ ||
now call w:

F(a)) = f(l) exp (—i(()t) dt Transform

0
J‘ The Fourier
—00

F(w) is called the Fourier Transform of /(7). It contains equivalent
information to that in f{(r). We say that £{z) lives in the time domain,
and F(w) lives in the frequency domain. F(w) is just another way of
looking at a function or wave.



The Inverse Fourier Transform

The Fourier Transform takes us from £{¢) to F(w).
How about going back?

Recall our formula for the Fourier Series of £{7) :

A — Z I cos(mt) + —Z F_sin(mt)

Now transform the sums to integrals from —o to «, and again replace
F, with F(w). Remembering the fact that we introduced a factor of i
(and including a factor of 2 that just crops up), we have:

o0

f(f) = 1 F(a)) GXp(la)t) do Inverse

2 72' Fourier
Transform




The Fourier Transform and its Inverse

The Fourier Transform and its Inverse:

F(w) = If (1) exp(—ier) dt FourierTransform

f() = % j F(w) exp(imt)dw | Inverse Fourier Transform
T

So we can transform to the frequency domain and back.
Interestingly, these transformations are very similar.

There are different definitions of these transforms. The 21T can
occur in several places, but the idea is generally the same.



Fourier Transform Notation

There are several ways to denote the Fourier transform of a
function.

If the function is labeled by a lower-case letter, such as 7,
we can write:
) — Ho)

If the function is already labeled by an upper-case letter, such as E,
we can write:

E0)—> 7{E@)}  E() > E(w)

[ Sometimes, this symbol is
used instead of the arrow:



Example: the Fourier Transform of a
rectangle function: rect(t)

1/2

F(o) = _[ eXp(—iwl‘)df=#[€Xp(—iwl‘)]1_/f/z
“1/2 =7

— L [exp(—iw/2)—exp(in/2)]

B -1/2 1/2
1 expliow/2)—exp(—iw/2)
(w/2) 2
_ sin(w/2) o) A
(w/2)
F(w) — SinC(C()/z) Imaginary
Component =0
MR AAVINAARGC
167




sinc(x) =

Sinc(x) and why it's important

sin(x) / X

-02 1

\7

VAR
IU 15\/ 20 \/5

u (radians)

)

Sinc(x/2) is the Fourier
transform of a rectangle
function.

Sinc?(x/2) is the Fourier
transform of a triangle
function.

Sinc?’(ax) is the diffraction
pattern from a slit.

It just crops up
everywhere...



The Fourier Transform of the triangle
function, A(t), is sinc*(®/2)

The triangle function is just what it sounds like.

A(t) sinc’(w/2)
Sometimes 1 1
people use
A(t), too, for D)
the triangle
function.
12 o 12t 0 @

We' Il prove this when we learn about convolution.
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Example: the Fourier Transform of a
decaying exponential: exp(-ar) (> 0)

F(w)= jexp( —at)exp(—iwt)dt f(t)
' (0 fort<0) exp(-at) fort>0

= [exp(~at —iwt)dt = | exp(-[a+io])dt
0 0

—1 -1

= exp(—fa + z'a)]t)|;oo .y

[exp(—o0) —exp(0)]

a+iow a+iw
—1
= a4l
a+iw
1
. . Imaginary
a+iw oart /‘

_

170



Example: the Fourier Transform of a
Gaussian, exp(-at?), is itself!

T {exp(—at’)} = T exp(—at”)exp(—iot) dt

oC exp(—(()2 / 4a)The details are a HW problem!

exp(—at’) exp(— o’ /4a)

]\ : ]\
= - = .

171



The Fourier Transform of &7) is 1.

T o(t) exp(—iwt) dt = exp(—iw[0]) =1
4 4A) ]

=

0 r @

And the Fourier Transform of 1 is 2nd{ w): j lexp(—iwt) dt =27 6(w)

1 ‘27?5( )

=)

r 0 @




The Fourier transform of exp(iw, 7)

0

T {explioyt)} = I exp(iw, t) exp(—i wt) dt

e —00

— j exp(—ilo—w,lt)dt = 2r o(w—w,)

exp(iay?) F{exp(iay)}
Im t
el :
ReoN_ /DN A\ 0 @
NZEN | A

The function exp(im,?) is the essential component of Fourier analysis. It is

a pure frequency.



The Fourier transform of cos(a, ?)

T {cos(m,t)} = jcos(wot) exp(—i wt) dt

00

- % j lexp(i m, 1) + exp(—i @, )| exp(~i ) dt

= % j exp(—ilw—w,|t)dt + % j exp(—i[o+ w,]t) dt
= ro(w-w,) + mwo(w+w,)
4 cos(myt) 7 {cos(w,t)}

AN\ AWN,
U/ [0O\/ \ |:> TCOO !O on , @




Fourier Transform Symmetry Properties

Expanding the Fourier transform of a function, A1):

0

Flw) = _[ [Re! £(1)}+iTm{ £ (£)}] [cos(et)—isin(et)] dt

—00

Expanding more, noting that: j O(t) dt =0 if O(t) is an odd function

F(o) = j Re{ ()} cos(er) dt + j Im{ £ ()} sin(wf) df < Re{F(o)]

—00 —00

b j Im{ £ (1)} cos(r) dt —i j Re{ £(£)} sin(ef) dt «Im{F(o)

—00 —00

Even functions of @ Odd functions of @ 175




The condition for the existence of a given F(w) is:

f@)] di <

—Q0

Functions that do not asymptote to zero in both the +e and —w
directions generally do not have Fourier transforms.

So we’ Il assume that all functions of interest go to zero at *oo.
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Periodic Functions

A function f(@) is periodic
if it is defined for all real 9

and if there is some positive number,

T such that f(9+T)=f(9)-

178
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Fourier Series

f(H) be a periodic function with period 27

The function can be represented by a
trigonometric series as:

f(9)= a, + ian cosnf + ibn sinnd
n=1 n=1

182



f(9)= a, +ian cosn9+ibn sinn@
n=1 n=1

What kind of trigonometric (series) functions are we
talking about?

cos 0, cos 260, cos 36--- and

sin @, sin 20, sin 36 ---

183









We want to determine the coefficients,

d and bn .

n

Let us first remember some useful integrations.

186



r cosnfcosmbdo

1o 1
= E-Lr cos(n + m)HdH = EL[ cos(n = m)0d6’

T

jcosn@cosm@d@ = () n+m

— T8

T

jcosn@cosm@cm: TN =1m

—T



.“ﬂ sinn@cosmbBdo

e 1 7
~ EL: sm(n + m)0d0 k 5-“-7: sm(n = m)0d0

Isin ncos modo = 0

—T

for all values of m.



I”sinnﬁsinmﬁdﬁ

17 1 e~
3 L[ cos(n—m)odo — E-Lz cos(n+m)odo

Isinn@siandO:O n-+-m

L

T

IsinnOSiand6=n n—m

—T



Determine 610

Integrate both sides of (1) from

—ua

to 7T

[ 1(6)as

.

a, +Zan cosn9+2bn sinn@
n=1 n=1

dé

190



+J: ansinnﬂ dé
\ n=1 J

[ (O)ao=] a@o+0+0

dé



j T}(@)d@ =27a, +0+0

e
ay = j {(e)de

a, is the average (dc) value of the

function, f(@) .



You may integrate both sides of (1) from

) to 27[ instead.

" f(6)as

2T
J‘O

a, + Zan cosnf + an sinnd
n=1 n=1

It is alright as long as the integration is
performed over one period.

do

193



[ r(6)as

= j‘:ﬂ a,d 0 + _[02” Zan cosn@

2 T st )
+I0 \;bn s1nn9) do

[ £(6)do={"aag+0+0

0

do



27
IO f(H)d9= 27a, +0+0

ay=——[" £(6)a8

272’



Determine tln

Multiply (1) by cosm 6

and then Integrate both sides from

— 7T

to 7T

f f(H)cos mOdo

-

a, + Zan cos n@ + an sinn6
n=1 n=1

cosmBdo

196



Let us do the integration on the right-hand-side one
term at a time.

First term,

Iao cosmOdo =0

— I

Second term,

I Zan cos n9cosmOdo
=

n=

197



Second term,

77 00

I Zan cosn@cosmBOdO=a r
7 p=1

Third term,

Iﬂ ibn sinnt cosm@do =0
" n=1

198



Therefore,

I_ﬂ f (H)cos mldlé =a_r

a, =~ [ F(@)cosmoad m=1,2,
T ™7



Determine bn

Multiply (1) by sinm 6

and then Integrate both sides from

— 7T

to 7T

f f(@)sin modo

-

a, +Zan cosn¢9+2bn sinn@
n=1 n=1

sinm@do

200



Let us do the integration on the right-hand-side one
term at a time.

First term,

Iﬂao sinm0do =0

Second term,

jﬂ ian cosn@sinm@do
_ﬂn=1

201



Second term,
T 0.0]
I Zan cosn@sinmOdo =0
7 n=1
Third term,

j” ibn sinn@sinm@dé=>b r
4 n=1

202



Therefore,

j‘_ﬂ f(@)sin moedo=>b r

bm=l_‘w f(&’)sinm@d&’ m=1,2,---
L7



The coefficients are:

e
L oy I {(G)de

am=lr f(H)cosdeH m=1,2,:-
T &7

b, =—[" f(6)siAmOds =12,
T Y7



We can write n in place of m:

-
;- m j nf(@)d@

an=lj‘ﬂ f(&’)cosné’d&’ n=1,2,--
TUF—7

b,,=lj‘ﬂ f(@)sinn@d@ n=1,2,--
¥l Y—7



The integrations can be performed from

0 to 272' instead.
1 9.1

ay=-—), (0)de
1 e27

a.%= 5 (Q)COSI’lede n=1,2,°'-
Y0

b, =% :ﬂf(@)sinnﬁdé’ n=1,2,--

206
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Example 1. Find the Fourier series of the
following periodic function.

)

A ——

0

oV

-A

T 2T 3T 47T STT

f0) =4 when 0<0<m
=—A when n<0O<2m

f(0+27)= £(6)

208



1 e27
ay=—— | r(6)ao

1
2
1
Y
=0

: [ r()ao+ j2 f(@)d&’:

_j:Admj:”—Ade_




a, = ljMf(é’)cosné’dé’
7?0

1 e~ 27
= £ I Acosn6d9+j (—A)cosn@d@]
Lo &
_l_Asinné’-ﬂ_l_lr_Asinn@qM_O
| n |, 7L no,




b=t [ " £(6)sinnode
7T Y0

1_ i 27
= — I Asinné’dé’——j (—A)sinné’dé’]
T LY0 43
A 1| Acosnﬁ_ﬂ_l_lpAcosné’_z”
T | n |, 7| ny_is
A

= [ cosnﬂ+cos0+cos2n7z—cosn7z]
ni




A
b, = —[— cosn7z+cos0+cos2n7z—cosn7z]

n

nir
=i[1+1+1+1]
nii

= ﬂ when n is odd
ni



A
b, = —[— cosnﬂ+cos0+cos2n7z—cosn7z]

n
ni

- A 1+141-1]
nmw

=(0 when nis even



Therefore, the corresponding Fourier series is

ﬁ sin9+1sin30+1sin59+1sin79+---
T 3 5 7

In writing the Fourier series we may not be able to
consider infinite number of terms for practical
reasons. The question therefore, is — how many

terms to consider?

214



When we consider 4 terms as shown in the previous

slide, the function looks like the following.

1.5

0.5

f(0) 0

-0.5

1.5

o/

\n/

v/
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When we consider 6 terms, the function looks like the
following.

1.5 | | |

f ] v ] -

05 7|

f(o) TN

0.5 Iy 3

-1.5
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When we consider 8 terms, the function looks like the
following.

1.5 T T |

1 —

) d

f0) 0

=0.5 |m 7l

- 1.5
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When we consider 12 terms, the function looks like
the following.

1.5 |
1 'ﬁ 2
05 —# _

£0) 0

1.5
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The red curve was drawn with 12 terms and the
blue curve was drawn with 4 terms.

1.5 |

O

-0.5

1.5 ' '
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The red curve was drawn with 12 terms and the
blue curve was drawn with 4 terms.

.5 I I [ I

lfAVAVAVA\ ,AVAVAVA*

0.5 [

=05

-1.5

0 220



The red curve was drawn with 20 terms and the
blue curve was drawn with 4 terms.

) [ [ I I

0.5 —

—1.5
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Even and Odd Functions

(We are not talking about even or odd
numbers.)

222



Even Functions

fo) 4

Mathematically speaking -

f(-06)

1(6)

The value of the
function would be
the same when we
walk equal
distances along the
X-axis in opposite
directions.
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Odd Functions
f(e) 4

Mathematically speaking -

f(-0)=-1(6)

The value of the
function would
change its sign but
with the same
magnitude when
we walk equal
distances along the
X-axis in opposite
directions.
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Even functions can solely be represented by
cosine waves because, cosine waves are even
functions. A sum of even functions is another

even function.

10



Odd functions can solely be represented by sine
waves because, sine waves are odd functions. A
sum of odd functions is another odd function.

—10 0 10



The Fourier series of an even function f(H)

is expressed in terms of a cosine series.
o0
f(H) =a, + Zan cosn@
n=1

The Fourier series of an odd function f(H)
is expressed in terms of a sine series.

£(6)=>b, sinnd
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Example 2. Find the Fourier series of the
following periodic function.

f(x)
\

|
|
|
|
|
|
|
|
—7T =0 T 3T STC 1T ot

f(x) =x’ when —-nw<x<xm

f(6+27)= £(6)
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1 ¢~ 1 ¢7 ,
”’0=E_“_ﬁf(x)dx=g X dx
w1 i =7Z'_2
_272'_3 3

-l X=—7T



a, =lr f(x)cosnxdx
TY9nx

1 T
= —[ I X cos nxdx:|
Y~

Use integration by parts. Details are shown in
your class note.
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This is an even function.

Therefore, bn - O

The corresponding Fourier series is

—— =4 +-

7’ cos2x c¢cos3x cosdx
COS X - ; AR i
3 2 3 4
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Functions Having Arbitrary Period

Assume that a function 7(?) has

period, T . We can relate angle
() with time (7) in the following
manner.

6 = wt

® is the angular velocity in radians per second.



w=2rf
£ is the frequency of the periodic function,
7
7/ 1
O=27ft where f—;
27T

Therefore, H = —f

T



6’=2—ﬂt d6’=2—7zdt

T T
Now change the limits of integration.
27T T
O=—-1m1 -—-ng=—"t ¥ i
T 2
27 T
0=nx A 1= —

T 2






=1J‘ﬁ f(@)cosn&’d&’ n=172,---
T Y-

g2
W T

j 2f( )cos(zﬂ t)dt n

£y



=lr f(H)sinané’ n=1,2,---
T Y9-n

T
2 ¢? 27n
b, ?jTj”( )sm( 7 t)dt n
2

1 2%



Example 3. Find the Fourier series of the
following periodic function.

f(t) ¢

f(t) = when—%ﬁts
T T RYA

=—fr+— when —

2 4



fe+T)=f(t

This is an odd function. Therefore,

20 0
b, = ! £(¢)sin

T

)

(2mm

WL 4

(2 )

=%{f@ﬁm

A )

t |dt

t |dt



T
S
b =2 tsin| 27 ¢ |t
I~ \ L
T
4 o TY . (2m
+—_|' —t+= |sin| ZZ5¢ |ar
I'°.\ TN )
4

Use integration by parts.



y, <8
T

Ji

2T

(T

) . g2
n7mw

b — O when n'is even.

n

\ 27m

(nx)
SIN| —
(2/

2

Sin

Cnx)

. 2




Therefore, the Fourier series is

)

Sin(

2T

T

1
—F— sin

32

|

6T

T

:

1
+5—2Sln

|

107

T

tj_
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The Complex Form of Fourier Series
f(9)= a, +Zan cosn9+2bn sinn @
n=1 n=1

Let us utilize the Euler formulae.

10 — 70O
e’ +e’

cos 0 =

sin 0 =

245



The Fth harmonic component of (1) can be
expressed as:

a cosn@+b sinnf

ejn0 _I_e—]nH e]nH _e—]nﬁ
=a, +b. .
2 21
e]né? _I_e—]né? : e]né? _e—]nH
=a —1b




a cosn@+b, sinnb

=(an_jbn\ejm9+
. 2
Denoting
(an_jbn\
Cn= y C
. 2

and CO — ”0

(a,+ jb, \ _ino

e

€ 7/
a,;+jb,"
AN/ F.



a cosnt+b sinn0

6 —jnd
=ce"’ +c le 7y

n



The Fourier series for f(@)
can be expressed as:

f (9) =c, + i(enej”e - c_ne"j”e)
n=1

0 0]

i jné
S

n=—0o0
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The coefficients can be evaluated in the
following manner.

cnz(an—an)
2

8 I f coandH—LJ‘ f smn@d@
Ty

=—rf(¢9)(cosn¢9—jsinn6)d9
TY-n

e [ f(6)e7ag
T~



¢ =%t Jb,
2

B I f cosn0d9+ij f smanH
5 &7

=2irf(¢9)(cosn9+jsinn9)d9
T Yn

1 74 A
— ﬂj‘_ﬂf(ﬁ)e’ 9619



Ca — b))
¢ =[B=1b

L 22 I
Note that C_n
C. -

Hence we may write that

c = £ j f(0)e db
2 J L

n=0,x1,£2,---

|

a + jb,

2

is the complex conjugate of

J



The complex form of the Fourier series of

f(e) with period 272' is:

o0

f(6’) = Z c e’
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Example 1. Find the Fourier series of the
following periodic function.

)

A ——

0

oV

-A

T 2T 3T 47T STT

f0) =4 when 0<0<m
=—A when n<0O<2m

f(0+27)= £(6)
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A 1if 0<x< T
A if 1t <x< 271

0 otherwise

r2TT

L- f(x) dx







|
Bn —

TU
B 6866

P T

f(x)-sm(n-x) dx

B, =0 B3y = 2.122

B = 0 B = 0.909

0

By

Bg =0



Complex Form

o0

£(0)= chejne ¢ = zin j;}(@)e_j"edﬁ

n=—00

n=0+1+2---

2 7

Cn) = —|  fx) e mxay
2w Jy



C(3) = -1.061i
C(7) = —0.455i
C(=3) = 1.061i

C(-7) = 0.455i
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Laplace Transform
Outline

* |n this talk, we will:
— Definition of the Laplace transform
— A few simple transforms
— Rules
— Demonstrations



Laplace Transform

Background

e Classical differential equations

Time Domain

y(e)+y(e)+ y() = x(r)

X@)zl

Solve differential equation l

y(t)= % —e '+ % e




Laplace Transform

Background

e Laplace transforms

<>>
. . O
Time Domain %
0

y(e)+y(e)+ y() = x(r)

X(t)zl 4

Frequency Domain

H(s) =

sP 43542

S
l Solve algebraic equation

l 1
s s°+35+2




Laplace Transform
Definition

* The Laplace transform is

£lf(0) = [£(0)ed
:F@)

e Common notation:

Lif(t)y=F(s) ~ f(r)

Llel)-G6) el Gls)




Laplace Transform

Definition
* Notation:
— Variables in italics t, S
— Functions in time space f, g

— Functions in frequency space  F, G
— Specific limits

£(0" )= lim £(z)

r—0"

£(07)= lim £(¢)

—0



Laplace Transform
Existence

* The Laplace transform of {(¢#) exists if

— The function 1(7) is piecewise continuous

— The function is bound by ‘f(t){ < Me ™"
for some kand M



Laplace Transform
Example Transforms

 We will look at the Laplace transforms of:
— The impulse function o(%)
— The unit step function u(¢)

— The ramp function t and monomials ¢”
— Polynomials, Taylor series, and ée!
— Sine and cosine



Laplace Transform
Example Transforms

 While deriving these, we will examine certain
properties:
— Linearity
— Damping
— Time scaling
— Time differentiation
— Frequency differentiation



Laplace Transform
Impulse Function

* The easiest transform is that of the impulse
function:

2150} [8(e)e d

: R (AP=Y

= e—s-
=1



Laplace Transform

Unit Step Function

* Next is the unit step function

Liu(t)}= ju(t)e_” dt

0"

0 t<0 o/ ¥
4 =|edt
u(t)_{1 (1 Oj




Laplace Transform

Integration by Parts

* Further cases require integration by parts
e Usually written as

?fdg:fg

b
Z—jgdf



Laplace Transform

Integration by Parts

* Product rule

dt di dt

L (E00)~{ 410l 4106 2 o00)

* Rearrange and integrate

o] 4 o) = e)et) - 4

dt

o) ()



Laplace Transform
Ramp Function

* The ramp function

Liru(r)} = Tte_”dt

f =
df:dt :t(_lestj _Il(_leﬂjdt
S £ Jo; A)
dg=e" dt 7
:O+l e " dt
__l —st SO_ 1
g="¢ / tult) = —
s




Laplace Transform
Monomials

* By repeated integration-by-parts, it is possible
to find the formula for a general monomial for
n=>0




Laplace Transform

Linearity Property

* The Laplace transform is linear

o If Lif(t)}=F(and  Llo(t) =t6én

Llaf(t)+bg(t)}=aF(s)bG(s)
af(t)+bg(t) & aF(s)bG(s)



Laplace Transform
Initial and Final Values

* Given f(¢)< F(then
£(0*)=lims F(s)

§—>00

f(o0)= lim sF(s)

s—0"

* Note sF(s) is the Laplace transform of f{l)(x)



Laplace Transform
Polynomials

 The Laplace transform of the polynomial

follows:

L

Zakt ulz

k=0

W

|43k
k=0

k+1



Laplace Transform
Polynomials

* This generalizes to Taylor series, e.qg.,

el ()= 20> Lt ()}
k=0 k' )
&K
> - k' Sk+1
(14 ‘ 1
F k+1
k:i ; e'ut) = ﬁ
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Laplace Transform
The Sine Function

* Sine requires two integration by parts:

o0

Lisin(t)u(?)} = I sin(t)e ™ dt

1

u
- £sin(0)u(e)} 10f 2



Laplace Transform
The Sine Function

* Consequently:




Laplace Transform
The Cosine Function

 As does cosine:
£loos(0)u(r)} = [cos(r)ed

0

= & _St —sin(t)e™dt
. cos f
¥l jsin(t)e dt
s s
= 1_{_13111(;)6_ st| 1 —lcos(t)e”dt]
S g2 Y T
1 17 /s
:S—2+O—S—2;cos(t)e ‘dt
=122 ploos(r)ulr) 10f2
s s



Laplace Transform
The Cosine Function

* Consequently:

B{cos(t)u(t)}:E_Sizg{cos(t)u(t)}
(> +1)edcos()ul¢) =5
eleos(i)ulr)}= ="~
- cos(t)u(t) & —

s +1

2 of 2




Laplace Transform

Damping Property

* Time domain damping &
frequency domain shifting

{—atf } J‘ az‘f 5t 1y



Laplace Transform

Damping Property

e Damped monomials

t"u(t) < £

n+l

e “t"ut) = y

n+l

(s+a)

A special case:




Laplace Transform

Time-Scaling Property

 Time domain scaling &
attenuated frequency domain scaling

Lif(at)} = Tf(at)e‘“dt

= [f(x)e Lz dr
J

a —=dlt

/3 jf(r)e_(i)rad T
a’l

1
o a
) [}



Laplace Transform

Time-Scaling Property

e Time scaling of trigonometric functions:

cos(t)ult) =

sin(¢)u(f) < E v




Why use Transforms?

* Transforms are not simply math curiosity

sketched at the corner of a woodstove by ol’
Frenchmen.

* Way to reframe a problem in a way that makes
it easier to understand, analyze and solve.



General Scheme using Transforms

o a4

Transf

ation

transformation

Transformed Solution of the
equation transformed equation

= HARD
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Typical Problem

* Given an input signal x(z), what is the output signal
y(t) after going through the system?

X(1)

~_ .

~

N—"

| System/

Filter

— y(1)?

e To solve it in the time domain (¢) is
cumbersome!




Integrating Differential Equation?

* Let s have asimple first order low-pass filter with
resistor R and capacitor C:

o—{ _
R

x(1) c V(1)

 The system is described by diff. eq.:
RCY'(1) + y(1) = x(2)

* To find a solution, we can integrate. Ugh!



Laplace Transform

e Formal definition:

LI/ (0)]=F(s)=] f()e "di

 Compare this to FT:

F(o)= [ f()édi

e Small differences:

— Integral from 0 to coto for Laplace
* f(t) for t<0 is not taken into account

— -s instead of -iw



Common Laplace Transfom

Name A1) F(s)
- o= ‘7 1
mpulse ¥ 0 w2
Step f@)=1 é
Ramp f@)=t Siz
Exponential f(t)y=e" \ ; Jlr 7
Sine £(t) = sin(awr) =71
s+

"
Damped Sine f(¢) = e “ sin(ar) Q 7 aj; v



Transfer Function H(s)

Definition X(s) —| H(s) = ¥(s)
— H(s) = Y(s) / X(s)

Relates the output of a linear system (or
component) to its input.

Describes how a linear system responds to an
impulse.

All linear operations allowed

— Scaling, addition, multiplication.



RC Circuit Revisited

e
“Ste p”
function

Time Domain

Laplace
Domain

A 7 A
; F RC—y+y=x T
> dt > | !

) ! L 0

| \s | 1 1 1

- X = s(1+RCs) s |1

——+
S 1+ RCs RC




i
<

[ F
Ho - 420 _ V() 2, .-

di di
Vo=V(t)+R I(t) A simple resistor-capacitor circuit &4
demonstrates charging of a capacitor.

. 1 [
H—} — Uresistor(t} + Ucapacitor(t) — E(f)R+ E/ ?’(T}dT
tn
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Charging a Capacitor

described in terms of a time constant RC.

When a battery is connected to a series resistor and capacitor, the initial current is
high as the battery transports charge from one plate of the capacitor to the other.
The charging current asymptotically approaches zero as the capacitor becomes

charged up to the battery voltage. Charging the capacitor stores energy in the
electric field between the capacitor plates. The rate of charging is typically

=0 R Lo
fﬁ R :' ‘r"" 12 I!-—"l IThaX, l
LIJI_; I I C i -lr:' E_.} — {." 1-1{] {,J_!||I R{‘] | "i__
£ -, Charge on g
= I capacitor il E
Vp=Ve+ Ve > “, [ = Vb ~tIRC 5
_ ¢ 5 R Charging 2
V,=IR+ C & et &
As charging progresses, sy
[V} RC ZAC 3AC 4RC lima —=
0 ﬁ} At r=0 AS [ — oo
V, = IR+~ o As
I e = Q- CV,
current decreases and Ve =0 V.oV,
charge increases. v,
I = E I =0

Calculation||Derive expressions ||Capacitor discharee || Air tank analogy

HyperPhysics**###* Electricity and Magnetism

R Nave

Ly |

[P
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Laplace for Circuits

Very simply, the Laplace transtorm substitutes s, the Laplace
transform operator for the differential operator d/dt. Then
the s term may be manipulated like any other variable.

Thus one will see s in a control system block to indicate
differentiator and 1/s to indicate integrator.

The substitution of s for d/dt leads to another one, s for
jw. This 1s useful in determining the transfer function of
an electrical network, and then its magnitude and phase re-
sponses.
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= S

Differentiator

1

— —_

5

Integrator



A Simple Example: Capacitor Charging
Equation

: d |
z(t}—(?ab(t) (1)

where:
i(t)  Current in the capacitor, amps, as a function of time

v(t) Voltage across the capacitor, volts, as a function of time
C Capacitance, farads

In words, the time-varying current into a capacitor is proportional to the rate of change of the voltage across its
terminals. The constant of proportionality is the capacitance C.

To apply the Laplace transform to this equation, we replace the differential operator d/dt by s and the voltage and
current by their transformed versions:

i(s) = Csuv(s)
= sCuv(s) (2)

where:
i(s)  Current in the capacitor, amps, in the Laplace domain

v(s) Voltage across the capacitor, volts, in the Laplace domain
C Capacitance, farads

Let’s reverse this and solve for the capacitor voltage:

o) = Gils) (

[@1¥S)
P



Now, back to the time domain: voltage and current transform to their time-dependent values and 1/s becomes an
integral:

o(t) = é / i(t)dt (4)

This is the long way ‘round. Equation 4 could be obtained directly by inspection of equation 1. However, it shows
a very simple application of the Laplace transform: we transformed the original equation into the Laplace domain,

manipulated it, and then transformed the result back into the time domain®.

302



Inductor Differential Equation

A similar reasoning process can be applied to the inductor. The basic differential equation relating voltage and current
in an inductor is:

di(t)

o)=L

()

where:
v(t) Voltage across the inductor, volts

i(t)  Current in the inductor, amps
C Inductance, Henries

Proceeding as we did in the case of capacitance, we replace the differential operator d/dt by s and the voltage and
current by their transformed versions:

v(s) = Lsi(s)
= sLi(s) (6)
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The reactance of the inductor (analogous to resistance, but affecting AC current only) is the ratio of voltage to
current:

1.1(5) = sL (7)

[nductors may then be represented by inductive reactance as sL1, sL2 and so on.
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Transfer Function of Low Pass RC Filter

A simple RC lowpass filter 1s shown in figure 4, where the
capacitor is indicated by its reactance 1/sC'. Let us determine

the frequency response of this filter. 1
The frequency response shows the relationship between R
output voltage and input voltage as a function of frequency. %
Consequently, a first step 1s to determine the relationship be- €;
tween e, and e;. The resistor and the reactance of the capac-  SE—
itor form a voltage divider, so we can write: _|1/sC i
& T £
o 2 (10) — 1/RC
€i Z1+ Zs we =1/

where: Figure 4: RC Lowpass Filter

e,  AC Output voltage voltage from the circuit

e;  AC Input voltage to the circuit

Z1  Impedance of the upper half of the voltage divider (the resistor)
Zo Impedance of the bottom half of the voltage divider (the capacitor)
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Capacitive Reactance

The reactance of the capacitor is the ratio of voltage to current:

u(is) 1

i(s) _ sC ®)

It's common to represent the capacitive reactance directly on a circuit diagram, so one sees capacitors labelled as
1/sC1, 1/sC3 and so on. For the purpose of circuit analysis these reactances may be treated as resistances.
The magnitude phase of capacitive reactance are also represented as

1

Xe=—H
JwC

(9)
where the variables are:

X. Capacitive reactance, ohms

j Imaginary operator, v/—1
w Circular frequency, radians/sec
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Strictly speaking, e, should be written as e, (w) or ¢, (f) to indicate that the value is a function of frequency, but we’ll
take that as understood.

Now substitute R for Z1. 1/36’ for Z5 and do some algebra:

€o 1/SC
e;  R+1/sC
1
~ 1+sRC (b

Now we need to introduce some new labels. The quantity RC' is important in these circuits: it 1s known as the time
constant T and will turn up again when we look at the time-domain response of the filter.

T = RC (12)

Then we could rewrite equation 11 this way:

2 = (13)
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We can do even better than this. In the frequency domain RC 1s related to the corner or cutoff frequency of the
filter, which is referred to as w, in radians/sec notation or f, in Hertz (cycles/second) .

1
We = —
-
1
= — 14
le (14)
So equation 13 could be written as:
€ 1
o - - 15
e; 1+ s/w, (1)
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Transfer Function of Low Pass LR Filter

The LR lowpass filter is shown in figure 7. Now we’ll deter-
mine the frequency response of this filter. As we’ll see, this is
very similar to the RC lowpass filter of the previous section.

The inductor and resistor form a voltage divider, so we
can write:

o _ _ %2 (21)

€; Zy + Zs Figure 7: LR Lowpass Filter

where
e,  AC Output voltage voltage from the circuit

e;  AC Input voltage to the circuit
Z1 Impedance of the upper half of the voltage divider (the inductor)
Z5 Impedance of the bottom half of the voltage divider (the resistor)

Now substitute sL for Z;, R for Z5 and do some algebra:

Co _ R
e;  R+sL
1
— (22)
L
1+SE
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